
Body wave propagation in rotating thermoelastic media

J.N. Sharma *, D. Grover
Department of Applied Sciences, National Institute of Technology, Hamirpur (HP) 177 005, India

a r t i c l e i n f o

Article history:
Received 29 January 2009
Received in revised form 25 March 2009
Available online 5 April 2009

Keywords:
Cardano’s method
Thermal relaxation
Kibel number
Dispersive waves
t-Test

a b s t r a c t

The present paper deals with the propagation of body waves in a homogenous isotropic,
rotating, generalized thermoelastic solid. The complex cubic secular equation has been
solved by using Cardano’s and perturbation methods to obtain phase velocities, attenua-
tions and specific loss factors of three attenuating and dispersive waves, which are possible
to exist in such media. These wave characteristics have also been computed numerically
for magnesium crystal and are presented graphically. Statistical analysis has been per-
formed to compare the computer simulated results obtained by using both methods. This
work may find applications in geophysics and gyroscopic sensors.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The propagation of elastic waves in 3-D unbounded media is a classical problem. The vibrational analysis of elastic rotating
structures such as beams; disks and membranes have been thoroughly addressed in literature by the authors (Advani, 1966;
Advani and Bulkeley, 1969; Hashemi and Richard, 2001; Huang and Wang, 2001; Luo and Mote, 2000). These studies are gen-
erally focused to determine the natural frequencies of some particular structures under rotation. The case of small angular
rotation (X�x) has been addressed by the geophysicists to investigate surface waves and natural frequencies of the Earth
(Aki and Richards, 1980). Auriault (2004) studied the body wave propagation in an infinite homogenous isotropic elastic med-
ium rotating with uniform angular velocity with respect to a Galilean axis. The classical theory of heat conduction predicts an
infinite speed of heat transportation which contradicts the physical facts. During the last three decades, non- classical theories
have been developed to alleviate this paradox. Lord and Shulman (1967) incorporated a flux-rate term in Fourier’s law of heat
conduction in order to formulate a generalized theory that admits finite speed for thermal signals. Green and Lindsay (1972)
included a temperature- rate term among the constitutive variables to develop a temperature- rate- dependent thermoelas-
ticity that does not violate the classical Fourier’s law of heat conduction in case of centrally symmetric bodies. This theory also
predicts a finite speed of heat propagation. According to these non-classical theories, heat propagation has been viewed as a
wave phenomenon rather than diffusion one. Chandrasekharaiah (1986) referred a wave-like thermal disturbance as ‘second
sound’. The actual occurrence of ‘second sound’ at low temperatures and small intervals of time has also been supported with
experimental exhibition by the researchers (Ackerman and Overtone, 1969; Ackerman et al., 1966) in solid helium. Guyer and
Krumhansal (1966) also presented a theoretical study of ‘second sound’ in solids.

The present paper deals with the problem of wave propagation in a homogenous isotropic, thermoelastic medium which is
rotating with uniform angular velocity ð~XÞ about a fixed axis~e3. The waves propagating in the plane ð~e1;~e2Þ perpendicular to~e3

may be affected by the Coriolis force under such a situation. In general, the wave propagation in the considered medium is found
to be governed by a complex cubic polynomial secular equation which provides us three complex roots. The secular equation has
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been solved by using Cardano’s and perturbation methods to obtain the roots which can be associated with three dispersive and
attenuating waves namely, quasi-longitudinal (QL), quasi-transverse (QT) and thermal (T-mode) waves. In order to illustrate the
analytical developments, the numerical solution of secular equation has also been carried out for magnesium like material.

2. Wave equations in rotating media

We consider a homogenous isotropic, thermoelastic solid initially at uniform temperature T0 in the undisturbed state. The
medium is assumed to be rotating with uniform angular velocity ~X with respect to an inertial frame. The basic governing
dynamical equations of linear generalized thermoelastic interactions (Hetnarski and Ignaczak, 2000) after including the Cori-
olis and centripetal forces, in absence of body forces and heat sources, are given by

lr2~uþ ðkþ lÞrr:~u� brT ¼ qð €~uþ ~X� ð~X�~uÞ þ 2ð~X� _~uÞÞ; ð1Þ

Kr2T � qCeð _T þ t0
€TÞ ¼ bT0r:ð _~uþ t0

€~uÞ; ð2Þ

where t0 is the thermal relaxation time,~uðx1; x2; x3; tÞ ¼ ðu1; u2; u3Þ is the displacement vector; T(x1,x2,x3,t) is the temperature
change; k,l are Lamé’s parameters; K is thermal conductivity; q and Ce are respectively, the density and specific heat at con-
stant strain; b = (3k + 2l)at,at is the linear thermal expansion. Here superposed dot represents time differentiation.

We define the non-dimensional quantities

x0i ¼
x�xi

c1
; t0 ¼ x�t; u0i ¼

qx�c1ui

bT0
; T 0 ¼ T

T0
; t00 ¼ x�t0; X0 ¼ X

x�
; d2 ¼ c2

2

c2
1

eT ¼
b2T0

qCeðkþ 2lÞ ;
ð3Þ

where x� ¼ Ceðkþ2lÞ
K ; c2

1 ¼
kþ2l

q ; c2
2 ¼

l
q.

Upon using quantities (3) in Eqs. (1) and (2), we obtain

d2r2~uþ ð1� d2Þrðr:~uÞ � rT ¼ €~uþ ~X� ð~X�~uÞ þ 2ð~X� _~uÞ; ð4Þ

r2T � ð _T þ t0
€TÞ � eTr:ð _~uþ t0

€~uÞ ¼ 0: ð5Þ

Here primes have been suppressed for convenience.

3. Dispersion equation and its solution

Let ð~e1;~e2;~e3Þ be the rotating orthonormal basis and we take ~X ¼ X~e3. A perturbation~u that is collinear to ~X is not affected
by Coriolis or convective accelerations. Therefore, we limit the analysis to displacements in the plane ð~e1;~e2Þ which remain
constant in the direction~e3. On applying the successive application of divergence and curl operators to Eq. (4) leads to a sys-
tem of following two coupled differential equations for e and ~w as

r2 þX2 � @2

@t2

" #
e� 2X _w3 �r2T ¼ 0; ð6Þ

d2r2 þX2 � @2

@t2

 !
w3 � 2x _e ¼ 0; ð7Þ

where e ¼ r:~u; ~w ¼ r�~u ¼ w3~e3. Clearly the longitudinal, transverse and thermal waves get coupled with each other here
in contrast to wave propagation in an inertial medium.

We consider waves that propagate in the direction~e1 of the form

ðe;w3; TÞ ¼ ðA1;A2;A3Þ expfiðkx1 �xtÞg; i2 ¼ �1: ð8Þ

Upon using wave solution (8) in Eqs. (5)–(7), we obtain

½1� m2ð1þ C�2Þ�A1 þ 2im2C�1A2 � A3 ¼ 0; ð9Þ
2im2C�1A1 � ½d2 � m2ð1þ C�2Þ�A2 ¼ 0; ð10Þ
eTs0m2A1 � ð1� s0m2ÞA3 ¼ 0; ð11Þ

where s0 ¼ ix�1 þ t0;v ¼ x
k . Here C ¼ x

X is called Kibel number.
The condition for the existence of non-trivial solution for A1, A2 and A3 of system of Eqs. (9)–(11) yields the dispersion

equation

Y3

i¼1

ð1� v2n2
i Þ ¼ 0: ð12Þ
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