Author's Accepted Manuscript

A nanoporous titanium dioxide framework for dyesensitized solar cell

Peizhi Yang, Qunwei Tang

PII: S0167-577X(15)30460-2

DOI: http://dx.doi.org/10.1016/j.matlet.2015.08.104

Reference: MLBLUE19465

To appear in: *Materials Letters*

Received date: 8 July 2015 Revised date: 7 August 2015 Accepted date: 22 August 2015

Cite this article as: Peizhi Yang and Qunwei Tang, A nanoporous titanium dioxide framework for dye-sensitized solar cell, *Materials Letters* http://dx.doi.org/10.1016/j.matlet.2015.08.104

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

A nanoporous titanium dioxide framework for dye-sensitized solar cell

Peizhi Yang^{1*}, Qunwei Tang^{2*}

¹ Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of

Education, Yunnan Normal University, Kunming 650500, China;

²Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China;

* E-mail address: pzhyang@hotmail.com; tangqunwei@ouc.edu.cn; Tel/Fax: 86 871 5517125.

Abstract: Dye-sensitized solar cell (DSSC) is a promising solution to energy depletion,

environmental pollution, and ecological destruction. In this communication, we have successfully

prepared nanoporous titanium dioxide (TiO₂) framework by etching traditional TiO₂ nanoparticle film

for DSSC applications. Due to the enhancement in light-scattering and fast electron transport, a

promising power conversion efficiency of 8.29% is recorded from the DSSC employing TiO₂

nanoframework in comparison with 6.24% for the solar cell with pristine TiO₂ anode.

Keywords: Energy storage and conversion; Solar energy materials; Structural

1. Introduction

Dye-sensitized solar cell (DSSC) [1] is a lower cost, simpler preparation process, relatively higher

photoelectric conversion efficiency and lighter mass [2] than conventional solar cells, such as

silicon-based solar cells. A typical DSSC device is composed of a mesoporous network of TiO₂

nanoparticles for uptaking dye photosensitizer, redox-active electrolyte containing iodide/triiodide

 (I/I_3^-) couples, and Pt counter electrode for converting I_3^- to I. An ideal TiO_2 film should

simultaneously meet several major requirements such as a large specific surface area for sufficient dye

uptakes, a superior scattering effect for enhanced light-harvesting, a prominent electron transport and

recombination characteristic for efficient charge-collection, as well as an adequate network and

1

Download English Version:

https://daneshyari.com/en/article/8017844

Download Persian Version:

https://daneshyari.com/article/8017844

<u>Daneshyari.com</u>