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a b s t r a c t

A non-isothermal elasto-viscoplastic model, developed within the framework of contin-
uum damage mechanics, is proposed to investigate the influence of thermomechanical
coupling on fatigue life of metallic materials. The numerical simulation of constant-ampli-
tude low-cycle fatigue testing of a 316L stainless steel at room temperature shows that the
hypothesis of isothermal processes may be inadequate when cyclic inelastic deformations
are involved. The results show that the specific heat can decrease when the fatigue damage
is high, causing a localized increase of the temperature even if the amount of heat gener-
ated is not so high and, hence, promoting a reduction in lifetime.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Inelastic cyclic deformation promotes heating of metallic structural elements. For high loading rates and/or high ampli-
tudes of inelastic deformation, a considerable amount of heat can be generated (Simo and Miehe, 1992; Pacheco and Costa-
Mattos, 1997; Stablere and Baker, 2000; Rosakis et al., 2000; Longère and Dragon, 2008). However, in traditional low-cycle
fatigue models, the variation of the material temperature due to thermomechanical coupling is not considered and unreal
life predictions may be obtained. Indeed, there are situations where such coupling cannot be neglected and a physically real-
istic model must consider it. Since temperature variation can interfere on the fatigue phenomena and most classical low-cy-
cle fatigue models only take into account isothermal processes, the ASTM standard for low-cycle fatigue testing (ASTM,
1980) establishes that the gradient of temperature during the testing program must not exceed a range of ±2 K. For high
inelastic amplitudes the standard recommends the use of cooling devices and low loading frequencies maintain the speci-
men temperature within the established range. However, this is a difficult condition to achieve in real mechanical compo-
nents in operation. In this paper, a continuum damage mechanics model is proposed to study the thermomechanical
coupling effects on the life prediction of metallic structures submitted to cyclic inelastic loadings. A thermodynamic ap-
proach permits a rational identification of the thermomechanical coupling in the mechanical and thermal equations. Numer-
ical simulations of austenitic stainless steel (AISI 316L) bars submitted to cyclic loadings are presented and analyzed.

2. First and second laws of thermodynamics

To set up a general constitutive theory it is necessary to consider aspects of the first and second law of thermodynamics
since heat transfer and dissipative behavior must be taken into account. Considering the hypothesis of small transformations
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and under suitable regularity assumptions it is possible to consider the following expressions as local versions of the first law
(FLT) and second law of thermodynamics (SLT)

FLT : q _e ¼ �divqþ r : _eþ q r; SLT : d ¼ r : _e� qð _wþ s _hÞ þ q:g P 0 ð1Þ

where a dot denotes the material time derivative; q is the mass density; r the stress tensor; e the total strain (the symmetric
part of the displacement gradient); e the internal energy per unity mass, hd the absolute temperature; s the total entropy per
unit mass; w ¼ e� hs the Helmholtz free energy per unit mass; q the heat flux vector and g ¼ �gradðlog hÞ, log h standing for
the logarithm of the absolute temperature. is the rate of energy dissipation per unit volume. The second law of thermody-
namics makes a distinction between possible processes ðd P 0Þ and impossible processes ðd < 0Þ. The possible processes
may be reversible (the rate of energy dissipation d is always equal to zero) or not. This local version of the SLT does not ex-
clude the possibility of unusual behaviors such as a decreasing temperature if heat is added to the medium. To exclude the
possibility of such kind of unusual behavior, here we only consider fluids that always satisfy a further restrictive constraint:

d1 ¼ r : _e� qð _wþ s _hÞP 0; d2 ¼ q � g P 0 ð2Þ

Obviously, if the above relations are satisfied, then the local version of the SLT presented in (1) will also be satisfied. It is
also simple to verify that (2) leads to the classical heat conduction inequality�q � gradðhÞP 0 since the absolute temperature
h is a positive quantity. This relation implies that heat flows in the direction of decreasing temperature when q is parallel to
the temperature gradient. The quantity d1, defined in (2), is usually called the intrinsic dissipation and the quantity d2, the
thermal dissipation. From the definition of the Helmholtz free energy per unit mass w and of the intrinsic dissipation d1 it is
possible to obtain the following alternative local form for the first law of thermodynamics which will be useful to analyze the
thermomechanical couplings in the next sections:

�divqþ qr ¼ �d1 � qh
o _w
oh

ð3Þ

3. Elasto-viscoplastic model

The model used in this paper is developed within the framework of the thermodynamics of the irreversible processes.
Such model is a generalization of the classic elasto-viscoplastic model proposed by Lemaitre and Chaboche (1990) for iso-
thermal processes. For an elasto-viscoplastic material, the thermodynamic state is completely determined by a finite set
of state variables, also called thermodynamic or independent variables. The state variables are the so-called observable vari-
ables – the total strain e and the absolute temperature - and a set of internal variables related to dissipative mechanisms –
the plastic strain variable ep, the isotropic hardening variable p, the kinematic hardening variable c and the damage variable
D. The macroscopic quantity D ð0 6 D 6 1Þ represents the material local degradation. When D = 0 the material is in a virgin
state and when D = 1 the material is completely damaged. In this model, the damage variable can be interpreted in terms of
energy or as a measure of the link between material points and is not related to a volume fraction of voids. A further discus-
sion about this interpretation of the damage variable can be found in Costa-Mattos et al. (1992). No matter the interpretation
of the damage variable, the analysis of the different possibilities the free energy can be affected by the damage variable
(which is the goal of this paper) is crucial to define how it can affect the specific heat C and provides a rational methodology
to understand the adequate form of free energy and specific heat in coupled thermo-elasto-viscoplasticity with isotropic
damage.

The elasto-viscoplastic behavior is characterized by two thermodynamic potentials: the Helmholtz free energy w and the
potential of dissipation /�. The Helmholtz free energy is expressed as:

qwðe; ep;p; c;D; hÞ ¼ ð1� DÞ½Weðe� ep; hÞ þWpðp; hÞ þWcðc; hÞ� �WhðhÞ ð4Þ

where the energy densities We, Wp, Wc and Wh have the following form:

Weðe� ep; hÞ ¼ E
2ð1þ mÞ ½ðe� epÞ : ðe� epÞ þ m

ð1� 2mÞ ½trðe� epÞ�2� � aE
1� 2m

ðh� h0Þtrðe� epÞ ð5Þ

Wpðp; hÞ ¼ bðpþ 1
d

e�dpÞ; Wcðc; hÞ ¼
a
2
ðc : cÞ; WhðhÞ ¼ q

Z h

h0

p1 logðnÞdnþ q
2
p2h

2 ð6Þ

E, m, a, b, d and a are temperature-sensitive material parameters, p1w and p2 are positive constants and h0 a reference
temperature. The so-called thermodynamic forces ðr;Bp;Bo;BD; sÞ, associated to the state variables ðe; p; c; D; hÞ, are defined
from , as follows (a discussion about the role of the thermodynamic forces can be found in Lemaitre and Chaboche, 1990):

r ¼ q
ow
oe

; Bp ¼ �q
ow
op

; Bc ¼ �q
ow
oc

; BD ¼ �q
ow
oD

; s ¼ � ow
oh

ð7Þ

An additional set of constitutive equations, called the evolution laws, which characterizes the evolution of the dissipative
processes, is obtained from the potential of dissipation /�:
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