Author's Accepted Manuscript

Organic-free Hydrothermal synthesis of chalcopyrite CuInS₂ and its photocatalytic activity for nitrate ions reduction

Ying Wang, Jia Yang, Wenliang Gao, Rihong Cong, Tao Yang

www.elsevier.com/locate/matlet

PII: S0167-577X(14)01621-8

DOI: http://dx.doi.org/10.1016/j.matlet.2014.08.144

Reference: MLBLUE17665

To appear in: *Materials Letters*

Received date: 20 July 2014 Accepted date: 27 August 2014

Cite this article as: Ying Wang, Jia Yang, Wenliang Gao, Rihong Cong, Tao Yang, Organic-free Hydrothermal synthesis of chalcopyrite CuInS₂ and its photocatalytic activity for nitrate ions reduction, *Materials Letters*, http://dx.doi.org/10.1016/j.matlet.2014.08.144

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Organic-free hydrothermal synthesis of chalcopyrite CuInS₂ and its photocatalytic activity for nitrate ions reduction

Ying Wang, Jia Yang, Wenliang Gao, Rihong Cong,* Tao Yang*

College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China

*Corresponding author, Email: taoyang@cqu.edu.cn, congrihong@cqu.edu.cn; Tel: +86-23-65105065.

Abstract

We performed a facile and organic-free hydrothermal method (thiourea-oxalic acid co-molten system) to prepare chalcopyrite CuInS₂ nano-crystallite. Its intrinsic photocatalytic activities to nitrate reduction in aqueous solutions was investigated in comparison to bulk CuInS₂ prepared by annealing Cu₂S and In₂S₃ at 600-750 °C under vacuum. All samples show good and similar photocatalytic activities for nitrate reduction, for example, the conversion rate is about 2 times of that in a blank experiment. All CuInS₂ catalysts were stable after the photocatalytic reactions, indicated by the identical XRD patterns before and after the reaction.

Keywords: Chalcopyrite; CuInS₂; nanocrystalline materials; electron microscopy; photocatalysis; nitrate reduction.

1. Introduction

Chalcopyrite $CuInS_2$ is an important narrow band semiconductor ($E_g = 1.5 \text{ eV}$). People devoted a lot of efforts to develop morphology-controllable synthetic methods, however mostly involving organic reagents. [1-6] For example, the well-known hot-injection approach was reported in 2008 to prepare nearly monodisperse Cu-In-S nanocrystals (NCs) with either chalcopyrite or wurtzite structure. [1] A solvothermal route using triethylene glycol as the reaction medium was applied to prepare $CuInS_2$ hierarchical microarchitectures. [2] Monodisperse $CuInS_2$ NCs can be produced by injecting mixed metal-oleate precursors into hot organic solvents. Here we use a thiourea-oxalic acid mixed system to perform an

Download English Version:

https://daneshyari.com/en/article/8018860

Download Persian Version:

https://daneshyari.com/article/8018860

Daneshyari.com