65

66

Materials Letters ■ (■■■) ■■■-■■■

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Effect of reducing agent concentrations and temperature on characteristics and antimicrobial activity of silver nanoparticles

Shiv Shankar^a, Julalak Chorachoo^a, Lily Jaiswal^b, Supayang Piyawan Voravuthikunchai^{a,*}

a Department of Microbiology, Faculty of Science and Natural Product Research Centre of Excellence, Prince of Songkla University, Hat Yai 90112, Thailand

ARTICLE INFO

Article history: Received 19 June 2014 Accepted 16 August 2014

Kevwords: Biomaterials Nanoparticles Green synthesis Rhodomyrtus tomentosa Antibacterial activity

ABSTRACT

In this study, the fabrication of colloidal silver nanoparticles (AgNPs) by cost-effective and environmental friendly method has been demonstrated. Rhodomyrtus tomentosa acetone extract (RAE) was used for the first as combined reducing and capping reagent time for AgNPs synthesis. The AgNPs were characterized by UV-visible spectroscopy, FTIR, XRD, zeta potential and DLS. AgNPs demonstrated profound antibacterial activity against Staphylococcus aureus with MIC and MBC ranging between 3.1-6.2 and 6.2-50 µg/ml, respectively. The outcomes of this study indicated that the synthesized AgNPs could be applied as an effective antimicrobial agent.

© 2014 Published by Elsevier B.V.

1. Introduction

Metal nanoparticles have received considerable attention in recent years due to their wide range of applications in the biomedical field [1-3]. Silver nanoparticles (AgNPs) have drawn very high research interest due to its antimicrobial properties [4]. Green method of AgNPs synthesis has advantages over chemical reduction and physical processes in being environment friendly and cost effective [5]. Several plants have been explored as promising candidates for the synthesis of AgNPs including medicinal plants [1–5].

Downy rose myrtle, Rhodomyrtus tomentosa (Aiton) Hassk., is an evergreen shrub native to Southeast Asia including Thailand. R. tomentosa has been reported to be rich in diverse phytochemicals like terpenoids, steroids, tannins, and flavonoids, [6-8] which could act as strong reducing agents. A pure compound, Rhodomyrtone from R. tomentosa possesses significant antibacterial activity against Gram-positive bacteria as well as antioxidant activity [9,10]. In view of the above properties, R. tomentosa acetone extract (RAE) was used as combined reducing and capping agents for AgNPs synthesis for the first time.

2. Materials and methods

Chemicals: All chemicals were procured from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise stated. Staphylococcus aureus

http://dx.doi.org/10.1016/j.matlet.2014.08.100 0167-577X/© 2014 Published by Elsevier B.V. ATCC 25923 was used for antibacterial study. S. aureus was cultured on Mueller-Hinton agar (MHA) (Difco, France) at 35 °C for 24 h. R. tomentosa acetone extract (RAE) was prepared by the method described [10], dissolved in 100% DMSO and served as stock solution.

Synthesis of silver nanoparticles: For synthesis of AgNPs, 0.01, 0.05 and 0.1% (w/v) stock solution of RAE was dissolved in 20 ml of MiliQ water. The aqueous solution of silver nitrate (AgNO₃) was added drop-wise to above solution to make a final concentration of silver 1 mM and placed the flasks in a rotatory shaker at 28 and 50 °C, in dark (to minimize the photo activation of AgNO₃) at 150 rpm. After 48 h of reaction, the samples were centrifuged at 14,000 rpm for 30 min and washed the pellets with MiliQ water. The pellets of AgNPs were resuspended in MiliQ water and stored at 4 °C till further analysis. AgNPs synthesized using 0.01, 0.05 and 0.1% (w/v) RAE at 28 °C were designated as Ag28A, Ag28B, and Ag28C, respectively, however, AgNPs synthesized using 0.01, 0.05 and 0.1% (w/v) RAE at 50 °C were designated as Ag50A, Ag50B, and Ag50C, respectively throughout the manuscript.

Time dependent synthesis of AgNPs was monitored by reacting 1 mM solution of AgNO₃ with 0.01% (w/v) RAE at 28 °C on rotatory shaker. 1 ml samples were taken out at different time interval, diluted 5 times with MiliQ water and UV-visible spectra were recorded.

Characterization of nanoparticles: The AgNPs were digested with 1% (v/v) HNO₃ and concentrations of RAE and silver in AgNPs were determined by UV-visible spectrphotometer (by taking absorbance at 670 nm) and atomic absorption spectrophotometer, respectively.

UV-visible absorption spectra were measured using a UV/vis spectrophotometer (Perkins Elmer LAMBDA 25 UV/Vis

Please cite this article as: Shankar S, et al. Effect of reducing agent concentrations and temperature on characteristics and antimicrobial activity of silver nanoparticles, Mater Lett (2014), http://dx.doi.org/10.1016/j.matlet.2014.08.100

^b School of Applied Sciences, RMIT University, Melbourne 3001, VIC, Australia

^{*} Corresponding author. Tel.: +66 74288340; fax: +66 74446661. E-mail address: supayang.v@psu.ac.th (S.P. Voravuthikunchai).

spectrophotometer) in the in the wavelength of 200–800 nm. In order to determine the functional groups involved in the synthesis and capping of AgNPs, Fourier transform infrared (FTIR) analysis was carried out. Fourier transform infrared (FT-IR) analysis was carried out at a resolution of $4\,\rm cm^{-1}$ in transmission mode at frequency ranged 4000–400 cm $^{-1}$ with EQUINOX 55 spectrophotometer (Bruker, Germany) using a KBr pellet method.

Shape and size of AgNPs were determined by transmission electron microscopy (TEM). Thin films of AgNPs were prepared on a carbon coated copper grid by dropping 10 µl of the sample on the grid. The extra solution was removed from the grid using a blotting paper and then the film on the TEM grid were allowed to air dry. The image analysis of AgNPs was done using IEOL-1010 instrument operated at an accelerating voltage of 120 kV. The HR-TEM (high resolution transmission electron microscope) images were taken in JEOL-2010 instrument operated at an accelerating voltage of 200 kV. Zeta potential and particle size were measured by Zeta PALS-zeta potential analyzer (Brookenhaven Instruments Corporation) by the DLS method with respect to the refractive index of deionised water. Crystalline nature of metallic AgNPs was examined by X-ray diffraction (XRD). The film of AgNPs was prepared on glass slide by dropcoating with nanoparticle solution and air dried. The films on glass slide was then subjected to X-ray diffraction, which were performed in a transmission mode on a Philips PW 1830 instrument operated at 40 kV and a current of 30 mA with Cu $K\alpha$ radiation.

Antimicrobial assay: Antimicrobial assay of the synthesized nanoparticles against *S. aureus* was performed using a modified broth microdilution method recommended by Clinical Laboratory Standardization Institute (CLSI) guideline [11].

For application of AgNP as dressing materials, the cotton gauze was cut in pieces of 1 cm \times 1 cm, dipped into 2 MIC of Ag50C and RAE solution (stock solution of RAE diluted with sterile double distilled water) and air dried. An overnight grown culture of *S. aureus* in MHB was spread on petri plates containing MHA medium. The cotton gauze was placed at the center of the plate and incubated for 12 h at 37 °C. After 12 h the cotton gauze was removed and plates were re-incubated at 37 °C till 24 h.

3. Results and discussion

Characterization of nanoparticles: The reaction of RAE with aqueous AgNO₃ led to the change in the color of the reaction mixture from light yellow to brownish yellow depended on the time of reaction, the concentrations of RAE, and the reaction temperature (Fig. 1a and b). UV-visible spectra of the solution showed a strong absorption band centered around 420 nm, which is the characteristic surface plasmon resonance absorption of spherical AgNPs [12,13]. This clearly showed that RAE extract was able to reduce the silver ions to form AgNPs. The intensity of

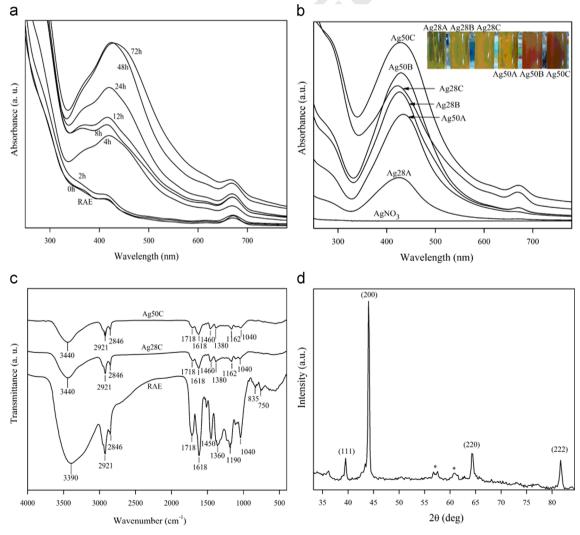


Fig. 1. UV-visible absorption spectra of AgNPs (a) with reference to time, (b) after 48 h with different RAE concentrations at 28 and 50 °C. (c) FT-IR spectra of RAE, Ag28C and Ag50C, and (d) XRD spectra of Ag50C.

Download English Version:

https://daneshyari.com/en/article/8018913

Download Persian Version:

https://daneshyari.com/article/8018913

<u>Daneshyari.com</u>