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Abstract

The paper presents quasi-static FE-simulations of the crack formation in a reinforced concrete bar without stirrups sub-
ject to tension. The material was modeled with a continuum smeared crack model using an elasto-plastic constitutive law.
A linear Rankine criterion with isotropic softening and associated flow rule was adopted in a tensile regime. To ensure the
mesh-independency, the softening parameter was enhanced by a characteristic length of micro-structure by means of a
non-local theory. Attention was laid to the effect of a different characteristic length of micro-structure and initial bond-slip
stiffness on the spacing of localized zones.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis of reinforced concrete elements is complex due to occurrence of strain localization in concrete.
The strain localization which is a fundamental phenomenon in concrete under both quasi-static and dynamic
conditions (Pijaudier-Cabot and Bazant, 1987; van Vliet and van Mier, 1996; Chen et al., 2001) can occur in
the form of cracks (if cohesive properties are dominant) or shear zones (if frictional properties prevail). The
determination of the width and spacing of strain localization is crucial to evaluate the material strength at
peak and in the post-peak regime.

The goal of the research carried out at the Gdańsk University of Technology is to describe the crack for-
mation in concrete and reinforced concrete elements using continuum (Bobinski and Tejchman, 2004, 2006)
and discrete models (Kozicki and Tejchman, in press). In this paper, the results of a plane strain FE-analysis
of primary cracks (width and spacing) in a reinforced concrete bar subject to tension in quasi-static with a
continuum model are described. The calculations were carried out with an elasto-plastic constitutive law using
a linear Rankine failure function. In the simulations, different characteristic lengths of micro-structure, rein-
forcement ratios and bonds between concrete and reinforcement were used.
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2. Constitutive model for concrete

To describe the behaviour of concrete in a tensile regime during uniaxial tension, a Rankine criterion was
used with a yield function f assuming isotropic softening defined as

f ¼ max r1; r2; r3f g � rtðjÞ; ð1Þ

where ri the principal stress, rt the tensile yield stress and j the softening parameter (equal to the maximum
principal plastic strain ep

1Þ. The associated flow rule was assumed. The edges and vertex in the Rankine yield
function were taken into account by an addition of plastic multipliers. To preserve the well-posedness of the
boundary value problem, to obtain mesh-independent results and to include a characteristic length of micro-
structure for simulations of a deterministic size effect, a non-local theory was used as a regularization
technique (Pijaudier-Cabot and Bazant, 1987; Bazant and Jirasek, 2002). In the calculations, the softening
parameter j was assumed to be non-local:

�jðxÞ ¼
R

V xðjjx� njjÞjðnÞdnR
V xðjjx� njjÞdn

; ð2Þ

where �jðxÞ is the non-local softening parameter, V the volume of the body, x the coordinates of the considered
(actual) point, n the coordinates of the surrounding points and x the weighting function. The chosen formula
(Eq. (2)) satisfies the normalizing condition (Bazant and Jirasek, 2002). As a weighting function x, a Gauss
distribution function was used:

xðrÞ ¼ 1
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; ð3Þ

where the parameter lc is a characteristic length of micro-structure and r is a distance between two material
points. The averaging in Eq. (3) is restricted to a small representative area around each material point (the
influence of points at the distance of r = 3lc is only of 0.1%). The characteristic length is related to the
micro-structure of the material (e.g. maximum aggregate size and spacing in concrete, Bazant and Jirasek,
2002). It is usually determined with an inverse identification process of experimental data (Geers et al.,
1996). However, the determination of one representative characteristic length of micro-structure lc is very
complex in concrete since strain localization can include a mixed mode (cracks and shear zones) and the char-
acteristic length (which is one-dimensional) is related to the fracture process zone with a certain area or vol-
ume (Bazant and Jirasek, 2002) which increases during deformation (Pijaudier-Cabot et al., 2004). It depends
also on the choice of the weighting function. In turn, other researchers conclude that the characteristic length
depends upon the boundary value problem (Ferrara and di Prisco, 2001).

The FE-analyses show that a classical non-local model (Eq. (2)) does not fully regularize a boundary value
problem in elasto-plasticity (Brinkgreve, 1994; Bobinski and Tejchman, 2004). Therefore, a modified formula
(according to Brinkgreve, 1994) was used to calculate the non-local softening parameter

�jðxÞ ¼ jðxÞ þ m

R
V xðjjx� njjÞjðnÞdnR

V xðjjx� njjÞdn
� jðxÞ

� �
; ð4Þ

where m denotes a non-local parameter controlling the size of the localized plastic zone and the distribution of
the plastic strain. For m = 0, a local approach is obtained and for m = 1, a classical non-local model is recov-
ered. If the non-local parameter m > 1, the influence of non-locality increases and the localized plastic region
reaches a finite mesh-independent size (Bobinski and Tejchman, 2004). To simplify the calculations, the non-
local rates were replaced by their approximation Djest calculated on the basis of the known total strain incre-
ment values:

D�jðxÞ � DjðxÞ þ m

R
V xðjjx� njjÞDjestðnÞdnR

V xðjjx� njjÞdn
� DjestðxÞ

� �
ð5Þ

with Djest(x) � De1(x) (De1 the increment of principal total strain). Eq. (5) enables to ‘freeze’ the non-local
influence of the neighboring points and to determine the actual values of the softening parameters using
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