Author's Accepted Manuscript

One pot green synthesis of gold nanowires using pomegranate juice

Mahdi Malekshahi Byranvand, Ali Nemati Kharat

www.elsevier.com/locate/matlet

PII: S0167-577X(14)01296-8

DOI: http://dx.doi.org/10.1016/j.matlet.2014.07.046

Reference: MLBLUE17378

To appear in: *Materials Letters*

Received date: 20 May 2014 Accepted date: 5 July 2014

Cite this article as: Mahdi Malekshahi Byranvand, Ali Nemati Kharat, One pot green synthesis of gold nanowires using pomegranate juice, *Materials Letters*, http://dx.doi.org/10.1016/j.matlet.2014.07.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

PTED MANU

One pot green synthesis of gold nanowires using pomegranate juice

Mahdi Malekshahi Byranvand*, Ali Nemati Kharat

School of Chemistry, University College of Science, University of Tehran, Tehran, Iran

Abstract

Plasmonic gold nanoparticles with diverse morphology have unique properties that lend themselves to unusual

optical applications, potentially including use as absorption amplifiers in thin film solar cells. Gold nanowires

(NWs) were successfully synthesized with a green, one pot, surfactant free and room temperature method.

Pomegranate juice was used as redactor and capping agent. The as prepared gold NWs were examined by TEM,

SAED, XRD, EDX and UV-vis spectra. The method developed is environmentally friendly and allows control of

nanoparticles shapes by changing the concentrations of pomegranate juice.

Keywords: Green synthesis, Gold nanowires, Nanoparticles, Solar energy materials

1. Introduction

The electronic, optical, and catalytic properties of gold nanoparticles (NPs) are very different from those of their

bulk counterpart. Most of these differences originate from the large surface area-to-volume ratio and the spatial

confinement of the free electrons of gold NPs [1]. The shape of gold NPs is also an important parameter in

governing their physical and chemical properties [2]. A variety of shapes have been obtained such as nanospheres

[3], nanorods [4, 5], nanowires [6], nanoplates [7], nanocubes [8], and unusual angled shapes [9]. However, at recent

years, one- and two-dimensional nanostructures for gold NPs are especially attractive [10].

At present, thin film solar cells which reduce both material and their processing cost significantly, have attracted the

attention of optical researchers worldwide [11]. However, a major limitation with thin-film solar cells is the poor

absorption of light as compared to wafer-based solar cells. A new method using plasmonic structures can improve

the absorption of light due to excitation of localized surface plasmon [12]. Gold NPs with different morphology

similar to other noble metals, support surface plasmon due to their free electron like behavior [13]. Among various

* Corresponding Author:

Email: mahdi.malekshahi@gmail.com (Mahdi Malekshahi Byranvand)

Tel: +98(21) 61112499

Fax: +98(21) 61116355

1

Download English Version:

https://daneshyari.com/en/article/8019365

Download Persian Version:

https://daneshyari.com/article/8019365

<u>Daneshyari.com</u>