63 64 65 66 #### Materials Letters ■ (■■■) ■■■-■■■ EI SEVIED Contents lists available at ScienceDirect ### Materials Letters journal homepage: www.elsevier.com/locate/matlet # Synthesis and luminescent properties of a novel red-emitting phosphor: Eu³⁺-activated Ba₂ScO₃F Jiyou Zhong ^{a,b}, Weidong Zhuang ^{a,*}, Xianran Xing ^b, Ronghui Liu ^a, Guantong Chen ^a, Yuanhong Liu ^a, Lei Chen ^a #### ARTICLE INFO Article history: Received 12 April 2014 Accepted 2 June 2014 Keywords: Oxyfluoride Phosphors White LED Luminescence #### ABSTRACT A novel red-emitting Ba₂ScO₃F:Eu³⁺ phosphor was prepared by high-temperature solid-state reaction method. The structure and luminescence properties of the obtained phosphors were investigated. The crystallographic occupancy of Eu³⁺ in Ba₂ScO₃F was studied and verified to be the site of Sc³⁺ ions. Photoluminescence of the optimized Ba₂Sc_{0.94}O₃F:0.06Eu³⁺ phosphor showed that the phosphor can be efficiently excited by ultraviolet (395 nm) and blue (464 nm) light, and exhibits an intense red emission at 612 nm (due to $^5D_0 \rightarrow ^7F_2$ electric dipole transition of Eu³⁺ ions). The dependence of the luminescence intensity on temperatures was measured, and showed a satisfactory thermal quenching effect. These results suggest that the phosphor could be a potential for applications in w-LEDs. © 2014 Published by Elsevier B.V. #### 1. Introduction White light-emitting diodes (w-LEDs) have demonstrated such outstanding advantages as long lifetime, high energy efficiency, and environmental friendliness while comparing with incandescent and fluorescent lamps for solid-state lighting [1,2]. Commercial w-LEDs generally employ blue LED chips combining with yellowemitting phosphors [3], which have a color deficiency in the red region, and result in low color rendering index (CRI) [4] and high correlated color temperature (CCT). In order to solve this problem, red-emitting phosphors are added to fulfill the spectrum deficiency in red region. Meanwhile, near-ultraviolet (n-UV) LED chips combining with red-, green-, and blue-emitting phosphors are also used to obtain high color rendering index w-LEDs [5]. Therefore, red-emitting phosphors play an important role in producing high quality white light. However, the current red-emitting phosphors, no matter Eu³⁺ or Eu²⁺ ions activated phosphors, confront many problems like poor chemical stability for sulfide-based red-emitting phosphors [6], rigorous synthesis conditions and high prices for nitride-based red-emitting phosphors [7]. Consequently, it is essential to develop a high efficiency, excellent chemical stability and inexpensive red-emitting phosphors. $http://dx.doi.org/10.1016/j.matlet.2014.06.006\\0167-577X/©~2014~Published~by~Elsevier~B.V.$ Recently, oxyfluoride materials, such as Sr₃AlO₄F [8], Ca₂Al₃O₆F [9], Ca₄Si₂O₇F₂ [10,11], Sr₂LiSiO₄F [12] etc, have attracted more and more attentions as phosphor hosts due to their good stability, simple synthesis conditions and excellent luminescence properties. Moreover, Eu³⁺ doped phosphors can emit pure red light due to the sharp emission lines, and display a sufficient absorption at UV or blue band for LED chips [13]. Hence, Eu³⁺ activated redemitting oxyfluoride phosphors is a favorable choice. In this letter, a Eu³⁺-activated oxyfluoride Ba₂ScO₃F phosphor was synthesized, the crystallographic site and luminescence properties of Eu³⁺ ions in this phosphor were investigated in detail. #### 2. Experimental Eu³+-activated Ba₂ScO₃F phosphors were prepared by high-temperature solid-state reaction method. The starting materials, BaCO₃ (99.95%), Sc₂O₃ (99.99%), BaF₂ (99.99%), and Eu₂O₃ (99.99%) were weighed out according to the stoichiometric ratio. The mixed powder was grounded evenly in an agate mortar, and then homogeneous mixtures were put in an alumina crucible and continually fired at 1300 °C for 4 h in air. The crystal structure of the phosphor was characterized by an X-ray diffraction (XRD) analysis using an X-ray diffractometer with Co-Ka radiation (λ =0.178892 nm). The photoluminescence spectra and thermal quenching were measured by a spectrofluorometer, which are composed of a Xe high-pressure arc lamp, a photomultiplier tube and a heating apparatus. ^a National Engineering Research Center for Rare Earth Materials, General Research Institute for Nonferrous Metals, and Grirem Advanced Materials Co., Ltd., Beijing 100088, PR China ^b Department of Physical Chemistry, University of Science & Technology Beijing, Beijing 100083, PR China ^{*} Corresponding author. Tel.: +86 10 82241333; fax: +86 10 62355405. E-mail address: wdzhuang@126.com (W. Zhuang). #### 3. Results and discussion Phase and structure: The crystal structure of Ba₂ScO₃F, first reported by Richard L. et al. [14], has a tetragonal space group I4/ mmm (PDF card no. 89-0397) with cell parameters of a=b=4.1480(2) Å, c = 13.5441(8) Å, $\alpha = \beta = \gamma = 90^{\circ}$, Z = 2. The XRD patterns of the synthetic products with assumed compositions Ba₂ScO₃F and Ba₂Eu_{0.06}Sc_{0.94}O₃F (showed in Fig. 1a) matched well with JCPDS standard card, except for the intensities of the diffraction peaks for the preferred orientation in Miller (OOL) planes, no peaks of impure phases were observed in the experimental range, which indicated the well formed single phase of these two samples. While a small amount of Sc₂O₃ was detected from the phase analysis of X-ray diffraction for the synthetic products with assumed composition Ba_{1.94}Eu_{0.06}ScO₃F (showed in Fig. 1a). Therefore, it could be preliminarily inferred that the Sc³⁺ ions are partial substitution by Eu³⁺ ions. In addition, the XRD patterns of the samples Ba_{1.94}Eu_{0.06}ScO₃F and Ba₂Eu_{0.06}Sc_{0.94}O₃F showed that all the diffraction peaks shift to lower angles compared with Ba₂ScO₃F (showed in Fig. 1b), which demonstrated the lattice expansion while doping Eu³⁺ ions. In the structure of Ba₂ScO₃F (showed in Fig. 2), Ba²⁺ ions are coordinated by nine atoms with ionic radii approximately 1.47 Å [15] $(>r(Eu^{3+})=1.12 \text{ Å} [15]$ CN=9), while Sc³⁺ ions are coordinated by four oxygen and two disordered apical anion (O/F), forming distorted octahedrons [3,17] with ionic radii approximately 0.745 Å [15] ($< r(Eu^{3+}) = 0.947$ Å [15], CN=6). Obviously, the expansion of the lattices is most probably due to the partial substitution of Sc³⁺ ions by Eu³⁺ ions. The reason for Eu³⁺ ions occupying the sites of Sc³⁺ ions should be attributed to the ionic radii of Eu³⁺ ions matching Sc³⁺ ions better than Ba²⁺ ions. Photoluminescence properties: As we know, practical phosphors for LEDs usually suggest two exciting approaches of LED chips (UV-LED chip with the wavelength of 380–420 nm and blue-LED chip, 450–480 nm) [2]. The excitation spectrum (showed in Fig. 3) of Ba₂Sc_{0.94}O₃F:0.06Eu³⁺ in UV and blue range (monitored at 612 nm) contains several f–f transition lines of Eu³⁺ attributed to the transitions from 7F_0 ground state to the different excited states, with peaks at 320 nm, 362 nm, 379 nm, 387 nm, 395 nm, 409/414 nm and 464 nm, corresponding to the transitions from the 7F_0 ground state to the 5H_4 , 5D_4 , 5G_2 , 5G_3 , 5L_6 , 5D_3 and 5D_2 states of Eu³⁺ [16], respectively. Among them, two strong excitation peaks **Fig. 1.** The XRD patterns of the synthetic products with assumed composition $Ba_{1.94}Eu_{0.06}ScO_3F$ (green line), $Ba_2Eu_{0.06}Sc_{0.94}O_3F$ (blue line) and Ba_2ScO_3F (red line), (The asterisk marks the impurity phase, which is Sc_2O_3), 2θ ranges from (a) $10^\circ-90^\circ$, (b) $25^\circ-40^\circ$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) Fig. 2. The crystal structure model of Ba_2ScO_3F and coordination environment of Ba^{2+} and Sc^{3+} . **Fig. 3.** Excitation and emission spectra of the $Ba_2Sc_{0.94}O_3F:0.06Eu^{3+}$ phosphor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) exist, located at 395 nm and 464 nm, indicating the potential applications for UV- and blue-LEDs. The emission spectra of $Ba_2Sc_{0.94}O_3F:0.06Eu^{3+}$ under 395 nm and 464 nm excitation are showed in Fig. 3. The positions of emission peaks almost have no changes, while the emission intensity at 612 nm excited by 395 nm is remarkably stronger than that of 464 nm. The emission peaks at 580 nm, 585/598 nm, 612/620/628 nm, 656/669 nm, 695 nm are ascribed to transitions of ${}^5D_0 \rightarrow {}^7F_J$ (J=0-4) [16], respectively. It is known that the magnetic dipole ${}^5D_0 \rightarrow {}^7F_1$ transition is insensitive to the local environment surrounding Eu^{3+} ions, while the electric dipole ${}^5D_0 \rightarrow {}^7F_2$ transition is sensitive to the local coordination environment [13]. In this phosphor, the Eu^{3+} ions exhibited the largest emission intensity at 612 nm (${}^5D_0 \rightarrow {}^7F_2$), because the Eu^{3+} ions occupied the sites of Sc^{3+} ions, which are distorted for the disordered apical anion (O/F) [3,17]. The dependence of emission intensities of $Ba_2Sc_{1-x}O_3F:xEu^3+$ phosphors on Eu^3+ concentrations are shown in Fig. 4a. The emission intensities excited by 395 nm increase with Eu^3+ content increasing until a maximum intensity is reached when x=0.06, and then decrease due to concentration quenching. The concentration quenching occurs because the nonradiative energy transfers among Eu^3+ ion within a certain distance. The critical distance R_c can be calculated by the following formula $R_c=2[3V/(4\pi x_c N)]^{1/3}$, where V is the volume of the crystallographic unit cell, x_c is the ## Download English Version: # https://daneshyari.com/en/article/8020028 Download Persian Version: https://daneshyari.com/article/8020028 <u>Daneshyari.com</u>