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Randomness in mechanism dimensions and joints makes the mechanism motion deviate from
its designed motion. The probability (reliability) that such deviation is within an error
tolerance limit should be invariably large. This study shows that the accuracy of the reliability
analysis for dependent joint clearances is insufficient by existing kinematic reliability methods,
such as the First Order Second Moment (FOSM) Method and First Order Reliability Method
(FORM). We therefore propose a Hybrid Dimension Reduction Method (HDRM) to better
handle the dependent joint clearance variables. With the first order Taylor expansion for
independent dimension variables and bivariate dimension reduction for dependent joint
clearance variables, HDRM produces more accurate solutions than the FOSM and FORM while
maintains higher efficiency than FORM and Monte Carlo simulation. A slider-crank mechanism
is used as an example for the methodology demonstration and validation.
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1. Introduction

Uncertainty is ubiquitous inmechanisms [1]. The dimensions of a mechanism vary randomly. Likewise, the joint clearances of a
mechanism are also random. As a result, the actual motion output always deviates from the designed motion output to some
extent. This kind of deviation is referred to as a mechanical error [2] in the mechanism literature. The mechanical error can also be
called the mechanical uncertainty because the error is due to uncertainty. A small amount of uncertainty in dimensions and joint
clearances could lead to significant mechanical uncertainties.

Even in an ideal situation where no uncertainty presents, the output of a mechanism, synthesized by either precision points or
optimization, may still deviate from the desired output. This deviation is referred to as the structural error [2]. This error is the
difference between the nominal motion output and the desired motion output. This kind of error is not due to uncertainty.

The kinematic reliability of a mechanism is the probability that the mechanism realizes its required motion within a specified
tolerance limit. Let the motion error (or the performance function) be

Z = g Sð Þ = h Sð Þ−hA ð1Þ

where h(S) is the actualmotion output, hA is the desiredmotion output, and S is an n-dimensional random vector of dimension and
joint clearance variables. The above motion error is random and includes both the random mechanical uncertainty and
deterministic structural error. The kinematic reliability R is computed by the probability of the absolute motion error being less
than or equal to an allowable error ε.

R = Pr jg Sð Þ j b εf g ð2Þ
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where Pr{·} stands for a probability. The probability of failure is defined by

pf = Pr jg Sð Þ j N εf g ð3Þ

or

pf = Pr g Sð Þ N εf g + Pr g Sð Þ b−εf g = pþf + p−f ð4Þ

where pf
+=Pr{g(S)Nε}=1−Pr{g(S) b ε} and pf

−=Pr{g(S)b−ε}.
Sometime wemay be interested in knowing a motion error given a probability level α/100. This is the task of inverse reliability

analysis, which solves for a α % percentile value Zα %[3–5] such that

Pr g Sð Þ b Zα %
n o

= α = 100: ð5Þ

In the literature of kinematic reliability, the dominating methods are Monte Carlo simulation (MCS) and the First Order Second
Moment Method (FOSM). MCS is easy to use, but is inefficient for highly reliable mechanisms. FOSM is efficient, but as shown in
Section 5, it might be inaccurate when dependent joint clearances exist. The First Order Reliability Method (FORM) has also been
reported in kinematic reliability analysis [6], but it suffers the same drawback as FOSM as shown in Section 5.

The objective of this work is to develop a more accurate kinematic reliability analysis method. To maintain both efficiency and
accuracy, we employ the first order Taylor series expansion for independent dimension variables and the bivariate dimension
reduction approximation for dependent clearance variables. We hence call the new method the Hybrid Dimension Reduction
Method (HDRM). The contributions of this work consist of three elements: (1) the demonstration that FOSM and FORMmay not be
accurate if dependent clearance variables are involved, (2) the new HDRM, and (3) the efficient numerical procedure of im-
plementing HDRM.

In Section 2, a slider-crank mechanism is presented as a basis for explaining terminologies, concepts, and methodologies. MCS,
FOSM, and FORM are briefly reviewed in Section 3. The newHDRM is presented in Section 4 followed by numerical solutions to the
slider-crank mechanism in Section 5. Conclusions are made in Section 6.

2. An example for kinematic reliability analysis

In this paper, we use a slider-crank mechanism in Fig. 1 to show the background information and explain the methodologies.
Themotion output is the displacement D of the slider. The dimension variables are the lengths L=(L1, L2,L3)T. They are statistically
independent because they may be manufactured independently.

There are three revolute joints C1, C2, and C3. One joint between links i and j is illustrated in Fig. 2. The radii of the bearing
and journal are different because of the clearance at the joint. The clearance circle [7–13] is defined as a circle with a radius of
rc=rB−rJ, where rB and rJ are radii of the bearing and journal, respectively.

Given this example, we now provide notations for a general planar mechanism. Random variables S consist of dimension
variables L=(L1,…, Lm)T with a size of m×1 and clearance variables (X, Y)=((X1, Y1),…, (Xq, Yq))T with a size of q×2. As
commonly reported in the mechanism literature, the elements of L are independently and normally distributed. Xi and Yi are
statistically dependent because they are constrained within their clearance circle Ci (i=1,…, q) with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
i + Y2

i

q
≤ rci : ð6Þ

In the mechanism literature, the joint probability density function (PDF) of Xi and Yi is assumed either uniform or normal
[7–13]. Herein we use the uniform distribution, and the results can be easily extended to the normal distribution or any other

Fig. 1. Slider-crank mechanism.
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