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In this paper, a class of linear stochastic differential systems of descriptor type with symmetric and skew-
symmetric coefficients is considered. These kinds of systems have numerous applications in several areas
of engineering, systems and control theory with potential applications to multibody systems (con-
strained mechanical systems with singular mass matrices), power systems, robotics and elsewhere. Thus,
in our approach, using the Thompson canonical form for regular pencils, necessary and sufficient con-
ditions for the solvability of a general class of such systems are obtained. In addition, as interesting
theoretical applications, the solvability for any terminal condition and the problem of exact controll-
ability are completely settled. An application to controlled mechanical translation systems illustrates the
main findings of the paper.
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1. Introduction

The dynamical behavior of many physical and engineering
processes is usually modeled via different types of ordinary or
partially differential equations. Particularly, if the states of these
processes are in some ways constrained, like for example by con-
servation laws (such as Kirchoff's laws in electrical circuits) or by
position constraints (such as the movement of mass points on a
surface), then the appropriate mathematical model that should be
used is the descriptor systems (they are known also in the litera-
ture as differential-algebraic or algebro-differential or implicit
differential systems). In theory, these equations are considered to
be the most general and explicit solutions that describe, for in-
stance in mechanical engineering, the motion of constrained me-
chanical systems is limited by the fact that they cannot deal with
singular mass matrices, see [44]. However, also in [44], examples
are provided to demonstrate how systems with singular mass
matrices can arise in the modeling of mechanical systems in
classical mechanics, making the theory of descriptor systems of
significant importance for us. Moreover, it should be pointed here
that systems with singularities are not very common in classical
dynamics when dealing with unconstrained motion.

Now, regarding general applications, descriptor differential
systems can appear in a variety of areas of interest, such as
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electrical networks [14], multibody systems [13,38,39,42-44],
chemical engineering [36], semidiscretized Stokes equations [3-5],
multi-input multi-output economical models [11,33], etc. More-
over, some interesting examples of 2 x 2- descriptor systems with
numerical applications have been presented in [17]. Before we
proceed further, let us consider the following characteristic ex-
amples; see [25].

Example 1. A physical pendulum is modeled by the movement of
a mass point with mass m in Cartesian coordinates (x, y) under the
influence of gravity in a distance | around the origin. With the
kinetic energy T = m/2(x*> + y*) and the potential energy U=mgy,
where g is the gravity constant, using the constraint equation
x*> + y? — I> = 0, we obtain the Lagrange function

L:%(x2+y2)—mgy—/1(x2+y2 -B

with Lagrange parameter A. The equation of motion then have the
following form:

d(aL) oL
—|=|-==0
dt\og oq

for the variables g = x, y, 4, i.e.,

mi +2xA=0
my +2yA+mg=0
X+y?-B=0

It is clear that the system cannot have differentiation index one, it
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actually has differentiation index three.

Example 2. The non-stationary Stokes equation is a classical lin-
ear model for the laminar flow of a Newtonian fluid. It is described
by the partial differential equation (PDE)

Vau=0,

together with the initial and boundary conditions. Here u de-
scribes the velocity and p the pressure of the fluid. Using the
method of lines and discretizing first the space variables with fi-
nite element or difference methods typically leads to a linear de-
scriptor system of the following form:

u, = Au + \V/p,

i, = Au, + Bp,, B'u, =0,

where u, and pp, are semi-discrete approximations for u and p,
respectively. If the non-uniqueness of a free constant in the
pressure is fixed by the discretization method, then differentiation
index is well defined for this system.

Therefore, in the literature of systems science, such types of
equations have been studied intensively, theoretically as well as
numerically, in recent decades. For a systematic and comprehen-
sive exposition of the most important aspects regarding the theory
and the numerical treatment of the first-order descriptor systems,
the interested reader can consult [8,9,11,19,25,26,34] and the re-
ferences therein. Although recently in the existing literature of
descriptor systems, the generalization of linear higher-order ma-
trix differential equations of Apostol-Kolodner type has been
studied by Kalogeropoulos et al. [23] in the case of descriptor
systems

XU(t) = AX(¢),

where X(t) is a matrix function; see [2,6] and references therein.
Furthermore, it should be mentioned here that Section 5 [45]
describes a method for solving higher order equations of the
following form:

q(D)X(t) = AX(t),

where q is a scalar polynomial, D is the differentiation with respect
to t and A is a square matrix. Moreover, as it is known, higher order
nonlinear systems, i.e.

F(x, %, ..., x™) = 0,

appear in mechanical engineering, and consequently linear higher
order descriptor systems can arise naturally from the linearization
process of these systems, see for the case of second-order non-
linear systems [40]. Furthermore, in some of those applications, it
is consistent to design the coefficient matrices of the model by
considering a special structure (i.e. with symmetric or skew-
symmetric properties, etc.), see [43]. Particularly, by following this
direction, in [24,34], the solution for higher order linear descriptor
(matrix) differential systems of Apostol-Kolodner type is investi-
gated by considering pairs of complex matrices with symmetric
and skew symmetric structural properties.

Theory for linear descriptor systems in a stochastic framework
has been developed only lately in [1,21], where a special class of
linear stochastic descriptor systems with delays, constant coeffi-
cients, external differentiable and non-differentiable perturbations
is considered. Using the regular Matrix Pencil theory, see [19], the
form of the initial function is given, so the corresponding initial
value problem is uniquely solvable using the theory of generalized
stochastic processes, see also [1]. Finally, it should be mentioned
that two illustrative applications are presented in [21] using white
noise and fractional white noise. More recently, in [16], the basic
question of solvability has formulated and considered. There,

under the assumption that the pencil is regular, but without as-
suming any particular structure for the matrices, and using fun-
damental tools of matrix pencil theory, such as the Weierstrass
complex canonical form, the necessary and sufficient conditions
for the existence of a unique solution pair are derived. Moreover, a
normalization procedure is proposed, and the problem of exact
controllability for a class of linear descriptor stochastic systems is
completely settled.

In the present paper, a general class of linear stochastic dif-
ferential systems of descriptor type with symmetric and skew-
symmetric coefficients is considered. These systems are derived
from the linearization process of higher order nonlinear systems in
mechanical engineering, and the singular mass matrix is constant
as it has been discussed above, see also about the transformation
of high order linear descriptor systems to first order [23,31,35] and
references therein. Thus, the final value problem (backward case)
is proposed and examined. It is proved that this is uniquely sol-
vable and the solution is derived analytically. In our approach,
using the Thompson canonical form for regular pencils, necessary
and sufficient conditions for the solvability of a general class of
such systems are obtained. In addition, the solvability for any
terminal condition and the problem of exact controllability are
completely settled.

The paper is organized as follows. In Section 2, some known
but necessary preliminary results on the Thompson canonical
form are presented for readers convenience. In Section 3 we
consider the problem of solvability. This is done in three stages.
We begin with two special equations, which are then used to deal
with the general case. In Section 4, as an interesting theoretical
application we address the problem of exact controllability for
linear stochastic systems of descriptor type with special structure,
symmetric/skew-symmetric case. Moreover, a numerical example
is presented to illustrate further the main findings of the paper.
Finally, Section 5 concludes the whole discussion providing new
directions for research.

2. Model formulation

Let (22, 7, F1»0, P) be a given and complete filtered probability
space, on which a scalar standard Brownian motion (W(t), t > 0) is
defined. We assume that #; is the augmentation of
o{W(s)0 <s <t} by all the P-null sets of . If &2 2 - R" is an
Fr-random  variable such that E[I5?] <o, we write
& e 1@, 77, P; RY). Let f: [0, T] x 2 — R" denote an {F}>0 adapted
process; if[E/OTIf(t)I2 dt < o0, we write f(-) € L;(O, T; R™); if f(-) has
a.s. continuous sample paths and [EsuptE[O'Tllf(t)l2 < 00, we write
f(-) € L3(; C(0, T; RY)).

Linear backward stochastic differential equations (BSDEs) of
descriptor type without structural coefficients were introduced by
Gashi and Pantelous in their recent paper [16] extending further
the ideas and the results presented in [1,20] which were based on
generalized stochastic processes of Dirac type. In that paper, the
main equation is given by

{E dx(t) = [Ax(t) + Bu(t) + Cz(t)] dt + z(t) dW(t),
x(T)=¢, a.s. (2.1)

where E is a singular matrix, i.e. detE=0, ¢ € [, F7, P; R"), and
u-) e L%(O, T, [R"’).

The problem of solvability for these equations is that of ex-
istence of a solution pair (x(t), z(t)). In their non-descriptor form,
i.e. when E=]I, these have a long and fruitful history. They were
first introduced by Bismut in [7] in the context of stochastic linear-
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