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a b s t r a c t

Particle Filtering (PF) is a model-based, filtering technique, which has drawn the attention of the Prog-
nostic and Health Management (PHM) community due to its applicability to nonlinear models with non-
additive and non-Gaussian noise. When multiple physical models can describe the evolution of the
degradation of a component, the PF approach can be based on Multiple Swarms (MS) of particles, each
one evolving according to a different model, from which to select the most accurate a posteriori dis-
tribution. However, MS are highly computational demanding due to the large number of particles to
simulate. In this work, to tackle the problemwe have developed a PF approach based on the introduction
of an augmented discrete state identifying the physical model describing the component evolution,
which allows to detect the occurrence of abnormal conditions and identifying the degradation me-
chanism causing it. A crack growth degradation problem has been considered to prove the effectiveness
of the proposed method in the detection of the crack initiation and the identification of the occurring
degradation mechanism. The comparison of the obtained results with that of a literature MS method and
of an empirical statistical test has shown that the proposed method provides both an early detection of
the crack initiation, and an accurate and early identification of the degradation mechanism. A reduction
of the computational cost is also achieved.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the development of relatively affordable on-line
monitoring technology has yielded a growing interest in dynamic
maintenance paradigms such as Condition-Based Maintenance
(CBM) [25]. This is based on tracking the health conditions of the
monitored equipment and, on this basis, making maintenance
decisions. For this, two fundamental issues are (i) detection, i.e., the
recognition of a deviation from the normal operating conditions;
(ii) isolation or diagnostics, i.e., the characterization of the abnor-
mal state of the system.

In principle, reliable Fault Detection and Isolation (FDI) allows
identifying problems at an early stage, thus performing only
strictly necessary maintenance actions, to anticipate failures. This
avoids the danger of interrupting operations and possibly in-
troducing malfunctions due to errors of maintenance operators.

The appealing potential of CBM for improving maintenance
performance has boosted research and industry efforts in FDI
techniques, as witnessed by the considerable amount of related
literature (see [5,12,22–24,45–47] for surveys). These techniques
may be divided into two main categories: data-driven methods,
which resort to field data to build empirical degradation models
(e.g., Artificial Neural Network (ANN, [6,50]), Support Vector Ma-
chine (SVM, [20]), Local Gaussian Regression (LGR, [33,42])), and
model-based approaches, which utilize mathematical models to
describe the degradation mechanism. In both cases, the detection
of a change in the component state and the consequent diagnosis
are based on the comparison between the output of the model and
the data collected from the operating system.

With regards to the model-based approaches, a number of al-
gorithms have been successfully applied to FDI such as reversible
jump Markov Chain Monte Carlo (MCMC, [2,18,53]), parity space
equations [16] and others techniques surveyed by some FDI lit-
erature review works [12], [22,23]. In particular, a variety of fil-
tering algorithms have been developed to tackle FDI problems,
which use discretized differential equations to describe the de-
gradation evolution and stochastic noises to take into account the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/probengmech

Probabilistic Engineering Mechanics

http://dx.doi.org/10.1016/j.probengmech.2015.01.001
0266-8920/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author at: Energy Department, Politecnico di Milano, Via Ponzio
34/2, 20133, Milan, Italy.

E-mail addresses: enrico.zio@polimi.it, enrico.zio@ecp.fr,
enrico.zio@supelec.fr (E. Zio).

Probabilistic Engineering Mechanics 40 (2015) 12–24

www.sciencedirect.com/science/journal/02668920
www.elsevier.com/locate/probengmech
http://dx.doi.org/10.1016/j.probengmech.2015.01.001
http://dx.doi.org/10.1016/j.probengmech.2015.01.001
http://dx.doi.org/10.1016/j.probengmech.2015.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2015.01.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2015.01.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2015.01.001&domain=pdf
mailto:enrico.zio@polimi.it
mailto:enrico.zio@ecp.fr
mailto:enrico.zio@supelec.fr
http://dx.doi.org/10.1016/j.probengmech.2015.01.001


associated aleatory uncertainty. For example, Kalman Filter (KF)
has been adopted to detect incidents on freeways [49] and to set a
CBM policy on turbine blades affected by creep [4].

However, KF suffers from a limited applicability due to the
stringent hypotheses of model linearity and Gaussian noise, which
are often not compatible with practical FDI issues. Thus, some
generalizations of KF, such as Extended Kalman Filter (EKF,
[35,36]) and Unscented Kalman Filter (UFK, [27]), have been pro-
posed. Nonetheless, there are still situations where these filtering
approaches fail, due to high nonlinearity and for non-Gaussianity.

In this context, Particle Filtering (PF) has proven to be a robust
technique [3,14], for tackling realistic FDI problems [51,52]. In
particular, PF has been adopted for FDI within the Multi-Model
(MM) systems framework, where the description of the possible
component abnormal evolutions relies on a set of models [28]. In
this setting, detection aims at identifying when the component
starts to leave the nominal mode, whereas diagnostics consists in
selecting the model that best fits its current behavior.

Interesting applications of PF to FDI in MM systems have been
proposed in [1,10], where multiple swarms of particles are con-
temporaneously simulated, following all alternative models. FDI is,
then, based on Log-Likelihood Ratio (LLR) tests on the recorded
measurements to estimate for every swarm of particles the
probability of being from the right model. However, these meth-
ods are computationally burdensome and memory demanding, as
they require tracing a large number of particles.

Alternatively, an approach based on the augmentation of the
state vector with a variable indicating whether the component is
in normal or abnormal conditions has been propounded in
[29,38,44,48]. This approach can be considered as a generalization
of the Interacting Multiple Model (IMM) [19,31] algorithm by
means of PF. The choice among the possible alternative conditions
of the system is then taken based on the marginal distribution of
the added variable. This allows the filter to automatically lead the
particles to follow the right model, by the recorded measurements
which force the state vector to modify the value of the added
variable. In particular, such variable is chosen continuous in [29],
which proposes an ensemble of Monte Carlo adaptive filters, and
uses the LLR tests to make the FDI decision. On the contrary,
Boolean variables indicating the component state are used in
[38,44], where explicit models with associated probabilities of
occurrence are assumed to be known, and used to compel the
particles to evolve according to the different models. Then, the
measurements acquired at the updating steps will favor the par-
ticles evolving according to the correct model. A further work
discussing the augmentation of the state vector with a discrete
variable representing the component state is [48]. However, notice
that, this work, as well as that in [38] which investigates the po-
tential of such algorithms, has addressed case studies with only
two models, additive Gaussian noise, and abnormal conditions
where a sharp and abrupt jump in the measured variables is ob-
served. These conditions are rarely verified in practice, when the
fault detection and diagnosis concerns a gradually degrading in-
dustrial component [11].

In the context of the Interacting Multiple Model systems based
on PF, the novelty of the present work consists in the application
of the method to a diagnostic problem, whereas previous appli-
cations were focusing on the problem of detecting abnormal
conditions [1,10]. Furthermore, the proposed approach allows
treating non-additive Gaussian noises and, differently to another
work which considers only sharp degradations [48], it can be used
also in case of gradually evolving degradation processes. An ad-
ditional contribution of the paper is the comparison of different
techniques such as augmented state PF, the LLR-based approach
(e.g., [10]) and an intuitive approach based on statistical hypoth-
esis tests [26]. Finally, the influence of the model parameters such

as transition matrix entries and measurement error on the IMM PF
diagnostic performance is investigated in order to provide hints on
the parameters setting.

For the comparison, a case study is considered regarding a non-
linear crack growth in a structure. In particular, the following two
settings have been investigated:

1) There are only two models available, one for normal conditions
and the other for degradation; hence, in this case the detection
and diagnosis coincide. This setting allows us to compare the
performance of our approach with that of other works of
literature (e.g., [38,44]).

2) The component behavior is described by three models, the two
of the previous setting and one additional model describing a
different degradation mechanism leading to a different evolu-
tion of the crack growth. This allows evaluating the diagnostic
capability of the proposed approach, i.e., its ability of selecting
the right degradation mechanism.

The remainder of the paper is organized as follows. In Section
2, a general description of the Multi Model setting is presented,
with a focus on the case study considered in this work. In Section
3, basics of Particle Filtering are recalled for completeness. Section
4 summarizes the characteristics of the PF-based techniques pro-
posed in the literature to address FDI in Multi Model systems, and
describes the particular FDI technique based on the augmented
state vector. In Section 5 the application on a simulated but rea-
listic, case study of crack growth is presented. In Section 6 con-
clusions are drawn and further developments discussed.

2. Multi model system

A Multi Model system is defined as a system which cannot be
described by the same model during its entire life; on the contrary,
the description of its evolution requires a set of M models, each
one capturing different behaviors of the system in different si-
tuations or phases. Thus, a set of M state equations are proposed to
describe the different evolutions, which can be divided into two
main classes:

N models describing the component operation in normal con-
ditions m m, , ,n nN1

… :

( )

( )

x f x

x f x

m

m

: ,

: , (1a)

n k k
n

k k
n

n k k
n

k k
n

1 1 1

1 1 1N
N N

1
1 1ω

ω

=
⋅⋅⋅

=

− − −

− − −
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where NþD¼M, xk represents the state vector at time tk, and k 1ω −
is the noise at the previous time step, tk 1− , which defines the
aleatory uncertainty in the evolution of the process. In this work,
we assume that the process noise distribution is known, although
in real applications it must be inferred from experimental data or
retrieved from expert knowledge. The interested reader may refer
to [21] for a particle filtering-based technique that allows the joint
estimation of the state vector and the unknown parameters of the
noise distributions.

A further assumption is that the state xk cannot be precisely
measured, and the knowledge about its value is affected by
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