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a b s t r a c t

Complex technological networks designed for distribution of some resource or commodity are a per-
vasive feature of modern society. Moreover, the dependence of our society on modern technological
networks constantly grows. As a result, there is an increasing demand for these networks to be highly
reliable in delivering their service. As a consequence, there is a pressing need for efficient computational
methods that can quantitatively assess the reliability of technological networks to enhance their design
and operation in the presence of uncertainty in their future demand, supply and capacity. In this paper,
we propose a stochastic framework for quantitative assessment of the reliability of network service,
formulate a general network reliability problem within this framework, and then show how to calculate
the service reliability using Subset Simulation, an efficient Markov chain Monte Carlo method that was
originally developed for estimating small failure probabilities of complex dynamic systems. The effi-
ciency of the method is demonstrated with an illustrative example where two small-world network
generation models are compared in terms of the maximum-flow reliability of the networks that they
produce.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Complex technological networks are a pervasive feature of
modern society. The worldwide increase in urbanization and glo-
balization, accompanied by rapid growth of infrastructure and
technology, has produced complex networks with ever more in-
terdependent components. These networks are designed for dis-
tribution of some resource or commodity. Examples include
transportation networks (e.g. networks of roads or rail lines, or
networks of airline routes), communication networks (e.g. tele-
phone networks or the Internet), and utility networks (e.g. net-
works for delivery of electricity, gas or water).

Technological networks are so deeply integrated into the in-
frastructure of megacities that their failures, although rare, often
have serious consequences on the wellbeing of society. Societal
dependence on technological systems and networks is constantly
growing, giving an ever increasing vulnerability to their failure. As
a result, there is an increasing demand for modern technological
networks to be highly reliable in their operations. The degree to
which a network is able to provide the required service needs to

be quantitatively assessed during its design and operation, taking
into account uncertainty in the future demand, supply and net-
work operational capacity.

Traditional methods for network reliability analyses are based
on graph theory and mostly look at small scale networks. These
methods aim to exactly compute the network reliability and can
be roughly classified by the following (not mutually exclusive)
three categories: enumeration methods, direct methods, and de-
composition methods. Enumeration methods are typically based on
either complete state enumeration or more sophisticated methods
such as minpath or mincut enumeration, e.g. [1]. Direct methods
are intended to compute the reliability of a network from the
structure of the underlying graph, without a preliminary search for
the minpaths and mincuts, e.g. [13]. In decomposition methods, the
main idea is to divide the network into several subnetworks, and
the overall reliability is then calculated based on the reliabilities of
the corresponding subnetworks, e.g. [21]. A detailed review of
traditional methods for reliability analysis of small scale networks
is provided in [15]. All these methods in one way or another are
based on combinatorial exhaustive search through the network.

On the other hand, one of the inherent characteristic features of
modern technological networks is their very large size. Today the
complexity of real-world networks can reach millions or even
billions of vertices and edges with incomprehensible topology.
Fig. 1 shows a visual representation of a small portion
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(approximately 1%) of a California road network. In this network,
intersections and road endpoints are represented by vertices and
the roads connecting these intersections or endpoints are re-
presented by undirected edges.

This dramatic change of scale induces a corresponding change
in the philosophy of reliability analyses. Many of the exhaustive
search algorithms that have been applied to small networks are
simply not feasible for large networks, since essentially all relia-
bility problems of interest are NP-hard [27] and the exhaustive
algorithms grow in complexity very rapidly as a function of the
network size. It has been thus recognized that the classical
methods of reliability and risk analysis fail to provide the proper
instruments for analysis of actual modern networks [32]. As a
result, a new field of research has recently emerged with the focus
shifting away from the combinatorial exhaustive search metho-
dology to the study of statistical properties of large networks, to-
gether with the study of their robustness to random failures, er-
rors, and intentional attacks.

In this paper, we propose a stochastic framework for quanti-
tative assessment of network reliability in the presence of un-
certainty, formulate a general network reliability problem within
this framework, and show how to solve this problem using Subset
Simulation [5], an efficient Markov chain Monte Carlo method that
was originally developed for estimating small failure probabilities
of complex dynamic systems, such as civil engineering structures
at risk from earthquakes. The new theory was first presented in
the conference paper [36] but here we give a fuller explanation
and extended results. We remark that Subset Simulation has also
been used previously for evaluating origin–destination con-
nectivity reliability of lifeline networks [9].

We proceed as follows. In the next section, we highlight the
similarity between reliability problems for complex systems and
complex networks, and formulate a general network reliability
problem subjected to several realistic conditions that make this
problem computationally difficult. In Section 3, we describe the

Subset Simulation algorithm for solving the network reliability
problem. An illustrative example that demonstrates how Subset
Simulation can be effectively used for solving the maximum-flow
reliability problem and for finding reliable network topologies is
provided in Section 4. Concluding remarks are made in Section 5.

2. From complex systems to complex networks

Complex networks are often viewed as the structural skeletons
of complex dynamic systems. While networks are a relatively new
object of study in reliability engineering, the reliability of dynamic
systems is a well-established and deeply researched problem. The
engineering research community has developed several very effi-
cient methods for estimation of reliability of complex dynamic
systems such as tall buildings, bridges, and aircraft
[4,5,18,7,8,16,34,35]. Moreover, it can be shown (see, e.g. [33]) that
the system reliability problem is mathematically equivalent to two
other extensively researched problems: finding the free energy of
a physical system (statistical mechanics), and finding the marginal
likelihood of a Bayesian statistical model (Bayesian statistics). All
three problems can be considered as the problem of estimating the
ratio of normalizing constants for a pair of probability
distributions.

As a first step towards efficient network reliability methods,
this paper focuses on the development of a network analog of the
system reliability method, Subset Simulation [5]. In Section 2.1, we
briefly review the system reliability problem to demonstrate its
similarity with the network reliability problem which is discussed
in Section 2.2.

2.1. System reliability problem

Calculation of the reliability, or equivalently the probability of
failure pF, of a dynamic system under given excitation conditions is
one of the most important and challenging problems in reliability
engineering. The uncertainty in the input excitation x m∈ is
quantified by a joint probability density function (PDF) x( )π . The
performance of the dynamic system under this input is quantified
by a performance function  : mμ → through a dynamic input–
output model of the system. For example, if our system corres-
ponds to a tall building, the input x may represent an uncertain
earthquake excitation sampled at discrete times over some inter-
val and the performance x( )μ may represent the corresponding
maximum roof displacement over this duration, or the maximum
interstory drift over all stories for the duration, calculated from the
dynamic model.

Define the failure domain F m⊂ as the set of inputs (“failure
points”) that lead to the exceedance of some prescribed critical
threshold μ ∈⁎ :

F x x{ ( ) } (1)m μ μ= ∈ | > ⁎

In the above example, the critical threshold μ⁎ represents the
maximum permissible roof displacement or maximum permis-
sible interstory drift and so the failure domain F represents the set
of all earthquake excitations that lead to unacceptable deforma-
tion of the tall building.

The system reliability problem is then to compute the prob-
ability of failure that is given by the following integral:

 


p x F x dx x I x dx I( ) ( ) ( ) ( ) [ ], (2)F F
F Fm∫ ∫π π= ∈ = = = π

where π denotes expectation with respect to the distribution x( )π
and IF is the indicator function of the failure domain F: I x( ) 1F = if
the system subject to excitation x fails (i.e. the output x( )μ is not
acceptable according to the performance criterion, x( )μ μ> ⁎) and

Fig. 1. Man-made “galaxy”: a visual representation of a small portion ( 1%∼ ) of a
California road network. Intersections and road endpoints are represented by
vertices and the roads connecting these intersections or endpoints are represented
by undirected edges. The network data is available for free at http://snap.stanford.
edu/data/roadNet-CA.html. Visualization was done using the Network Workbench
Tool (available for free at http://nwb.slis.indiana.edu).
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