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a b s t r a c t

The present work is dedicated to a numerical investigation of the connection between state of dispersion
and percolation and its effect on the elastic properties of 2D random microstructures. The main objective
consists in checking out the link between percolation and mechanical response in the context of a
heterogeneous medium the reinforcements of which are not homogeneously dispersed. Besides, the
influence of the stiffness of inclusions is also investigated since this could impact on the percolation
effects. For these purposes, large samples of volume elements are generated according to the Monte Carlo
method. We consider the low cost framework of 2D random grids which enables large and in-depth
investigations. Besides, the spatial distribution of heterogeneities is simulated with the help of the
2-scale Boolean scheme of disks which is a powerful tool for modelling and studying several states of
dispersion. The numerical results highlight beneficial mechanical reinforcements for a heterogeneous
dispersion when the percolation phenomenon is enhanced. This improvement is highly sensitive to the
stiffness of heterogeneities.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The effective behaviour of heterogeneous composites is closely
related to the percolation phenomenon. This appears when the
concentration of heterogeneities is sufficiently important and
contacts are made easier. Pathways which are formed by a set of
connected inclusions, then enable the diffusion of properties
within the microstructure. As a result, a sharp jump is observed in
effective properties at a critical area or volume fraction which is
called percolation threshold. From a statistical point of view, this is
the density of inclusions for which the percolation probability is
50%. In electricity and heat transfer fields, the percolation phe-
nomenon is well-known and actually leads to a beneficial increase
of properties as exhibited by numerous experimental measure-
ments [1,2]. Classical power-law models provide convenient pre-
dictions of properties for conductivity problems. These depend on
the properties of the medium, the percolation threshold and a
percolation exponent which have to be determined according to
the material configuration [3–5]. The binary behaviour of the
conductivity leads to estimate effective properties as follows. Be-
low the percolation threshold the conductivity is zero, above the
percolation threshold the conductivity is predicted by the power-

law model.
In the mechanical framework, classical power-law models are

not sufficient to predict effective properties. Indeed the non-dif-
fusive behaviour of the constitutive equations of elasticity leads to
a more complex dependence. In this context, the predominant
parameter is not the percolation threshold anymore but the area
or volume fraction of heterogeneities. Thus, a network of un-
connected stiff inclusions can reinforce a matrix with lower
properties. However, in composites [6–8] and nanocomposites [9]
field, an increase in mechanical properties was numerically and
experimentally verified and connected to the percolation phe-
nomenon which suggests non-negligible percolation effects. Fur-
thermore, uncharacteristic percolation effects were sometimes
observed at very low volume fraction. Fralick et al. [10] in-
vestigated these effects and the hypothesized role of a connected
interface phase. However, other microstructural parameters such
as the dispersion of heterogeneities, the stiffness of the material
and the shape of inclusions could also impact on the percolation
response. Classically, elastic coefficients are predicted using mi-
cromechanics models such as the Mori–Tanaka (MT) one [11] or
bounds such as Hashin–Shtrikman (HS) ones [12]. Thus, the MT
model takes into account the geometry of heterogeneities but is
only valid for low densities due to percolation effects. Conversely,
the phenomenological series–parallel model [13] is an improved
power-law model which is only based on the percolation

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/probengmech

Probabilistic Engineering Mechanics

http://dx.doi.org/10.1016/j.probengmech.2014.12.004
0266-8920/& 2015 Elsevier Ltd. All rights reserved.

E-mail address: willy.leclerc@u-picardie.fr

Probabilistic Engineering Mechanics 40 (2015) 52–65

www.sciencedirect.com/science/journal/02668920
www.elsevier.com/locate/probengmech
http://dx.doi.org/10.1016/j.probengmech.2014.12.004
http://dx.doi.org/10.1016/j.probengmech.2014.12.004
http://dx.doi.org/10.1016/j.probengmech.2014.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2014.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2014.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2014.12.004&domain=pdf
mailto:willy.leclerc@u-picardie.fr
http://dx.doi.org/10.1016/j.probengmech.2014.12.004


threshold and percolation exponents. That is why, this only pro-
vides predictions for an area or volume fraction of inclusions
higher than the percolation threshold.

A full investigation for which both percolation and geometry
are taken into account whatever the density of heterogeneities,
necessitates a numerical approach. Generally the modelling is
based on the generation of representative volume elements (RVE)
and effective properties are estimated using a numerical technique
such as the Finite Element Method (FEM). The RVE enables to
describe complex microstructures for which several morphological
parameters are taken into account. In the present context, we fo-
cus our investigations on the distribution of heterogeneities. We
consider several states of dispersion in the sense that multiscale
random distributions are studied. We distinguish two cases. First,
the well-established case of a homogeneous dispersion for which a
classic random distribution is considered. Second, the case of a
2-scale random distribution for which the dispersion is hetero-
geneous. The material heterogeneity can be characterised by the
formation of agglomerates or voids. From an experimental point of
view, agglomerates reduce the surface bonding between the in-
clusions and the matrix in such a way that the percolation phe-
nomenon is disadvantaged. Thus, they act as stress concentrators
which thwart the reinforcement of the composite material [14,15].
Several numerical studies arrived at the same conclusions [16,17].
However, as described by Jeulin and Moreaud [18–20], the mate-
rial heterogeneity can also be characterised by an arrangement of
agglomerates at different scales. In this case, the composite is
homogeneous at the microscopic scale and void areas and ag-
gregates are only observable at the mesoscopic scale. Thus, the
percolation phenomenon is advantaged and potentially related to
a beneficial improvement of mechanical properties. This issue was
recently investigated by Leclerc and Karamian [21] in the frame-
work of random fibre composites. Nevertheless, even though low
percolation thresholds were exhibited, no mechanical reinforce-
ment was observed by the two authors.

However, this work suffered of two main limitations related to
the complexity of the framework of random fibre composites.
First, the effects of contrast, i.e., the effects related to the ratio
between the properties of the inclusions and those of the matrix,
were not taken into account. Second, the simulation of the het-
erogeneous medium by the 2-scale Boolean scheme of disks [20]
was limited to a scale factor of 4. This parameter describes the
scale of agglomeration so that a low value, typically lower than 5,
leads to individual agglomerates, and a high value, greater than 5,
leads to a 2-scale arrangement of agglomerates. Thus, the scale
factor was not really investigated and only very small beneficial
improvements in percolation threshold were observed. In the
present work, we propose to enlarge this previous study to a full
range of contrasts between 10 and 107 and higher scale factors up
to 20. Our main objective is to provide some responses on the
issue of the connection between percolation and effective prop-
erties in the context of a heterogeneous dispersion. We expect to
exhibit both advantageous reinforcements and contrast effects for
a heterogeneous state of dispersion. For this purpose, we consider
a simple modelling for which a low calculation cost is required. A
very large number of volume elements (VE) are generated by
Monte Carlo random draws [22,23] so that accurate results in both
percolation thresholds and effective properties can be obtained.
2D random microstructures are built with the help of a structured
grid of cells for which the heterogeneities are represented by a set
of randomly drawn cells. The heterogeneous dispersion is simu-
lated using the 2-scale Boolean scheme of disks which enables a
2-scale modelling for which the first scale corresponds to the ag-
glomerates, and the second scale to the heterogeneities. For
practical purposes, patterns are periodic. This assumption enables
a direct use of the double-scale homogenisation [24,25] which is a

powerful tool for estimating elastic properties whatever are both
contrast of properties and complexity of the microstructure. To
end up, percolation thresholds are assessed via the depth-first
search (DFS) algorithm which is improved by a dichotomous and
recursive approach [21].

The present paper is outlined as follows. Section 2 describes the
generation of random microstructures via the Monte Carlo meth-
od. Section 3 is dedicated to the numerical method for assessing
percolation thresholds. Section 4 presents the double-scale
homogenisation process which leads to the effective elastic
properties. A detailed study is also performed for estimating the
suitable VE dimensions in the framework of the Monte Carlo
method. The last section is dedicated to results and discussion. We
precise that from now on, the term “1-scale Boolean scheme” will
designate a homogeneous dispersion, and the term “2-scale Boo-
lean scheme” will designate a heterogeneous dispersion.

2. Microstructure modelling

2.1. RVE

Random microstructures are typically modelled with the help
of an RVE. An RVE is a classic but powerful tool to model a material
with heterogeneities. This is a representative pattern of the med-
ium the size of which has to respect several criterions. Indeed, the
RVE must be large enough to provide a large amount of informa-
tion on the microstructure but small enough to remain elementary
and limit the calculation cost in a finite element analysis (FEA)
[22,26]. Two methodologies can be considered. First, one can
generate a large RVE the size of which L is chosen such as no
boundary effects or anisotropy can be observed. Typically L has to
tend to infinity which is obviously not practically possible. Con-
sequently L is often chosen between 10 times or 20 times a
characteristic dimension δ of the heterogeneity. This is done to the
detriment of the representativeness of the cell. Hence the use of a
second methodology which consists of a random draw of a large
number of small volume elements (VE). In this case, boundary
effects are not negligible for one occurrence but tend to disappear
when considering the whole sample. Thus, one pattern is not re-
presentative of the material while the whole sample is re-
presentative. This approach has two main advantages. First, this is
more practical owing to the low dimensions of the VE. Second,
even if small VE require a large number of realisations, the
methodology is much more efficient, especially when L is less than
10 [27]. In such an approach the number of realisations nr of the
sampling process is estimated by a statistical approach based on
the study of the variance parameter DZ relatively to an effective
elastic property Z. nr and DZ are then connected to Z by the relative
error εrel which reads

D
Z n

1.96

(1)
rel

Z

r
ε =

However, the VE cannot be chosen too small and an accurate in-
vestigation of their dimensions has to be performed. The most
common process is studied and described in [22]. It consists in
generating a sample for which the VE dimensions are minimal, i.e.,
2 or 3 times the dimension of the heterogeneity, and testing the
validity of the results according to statistical tools. Two possibi-
lities exist, either results are valid and the VE dimensions are
determined, or results are not accurate enough and the process is
repeated for larger VE as many times as necessary for getting a
good accuracy.
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