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a b s t r a c t

The goal of tolerance analysis is to verify whether design tolerances enable a mechanism to be functional.
The current method consists in computing a probability of failure using Monte Carlo simulation com-
bined with an optimization scheme called at each iteration. This time consuming technique is not ap-
propriate for complex overconstrained systems. This paper proposes a transformation of the current
tolerance analysis problem formulation into a parallel system probability assessment problem using the
Lagrange dual form of the optimization problem. The number of events being very large, a preliminary
selective search algorithm is used to identify the most contributing events to the probability of failure
value. The First Order Reliability Method (FORM) for systems is eventually applied to compute the
probability of failure at low cost. The proposed method is tested on an overconstrained mechanism
modeled in three dimensions. Results are consistent with those obtained with the Monte Carlo simu-
lation and the computing time is significantly reduced.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A manufacturing process is not able to provide exactly the
same workpieces; indeed, theoretical dimensions of a design
product cannot be reached in a repetitive manner (tool wear,
operator variability, etc.). The mechanism behavior is disturbed by
geometrical deviations as well as gaps between different parts of
the mechanism. Design tolerances are therefore specified on dif-
ferent features of the mechanism to limit the deviations. Tolerance
analysis aims at analyzing the impact of these admissible varia-
tions on the mechanism behavior. The main stake is to evaluate a
quality level of the product during its design stage. The technique
used consists of assessing a probability of failure Pf of the me-
chanism of magnitude around 10�6 for large series production.
This value represents the probability that a functional condition,
C y Y 0f th= − ≥ , is not satisfied, where Y is a functional character-
istic of the mechanism and yth is a threshold value to not be
exceeded.

Tolerance analysis methods must consider the geometrical

deviations as random variables whose probabilistic distributions
are chosen regarding the manufacturing process [1,2]. However,
gaps between parts or contact points cannot be modeled by
aleatory uncertainty. Gaps belong to the parameter uncertainty
category [3] of the epistemic uncertainty which makes difficult the
mechanical behavior of this kind of mechanisms to be modeled.
Indeed, analyzing isoconstrained or overconstrained mechanisms
is different. An assembly which have only its six degrees of free-
dom fixed in three dimensions (three degrees of freedom in two
dimensions) is considered to be an isoconstrained mechanism,
usually without gaps. On the contrary, an assembly which have
more than six degrees of freedom fixed is considered as an over-
constrained mechanism. Gaps allow this kind of mechanism to be
assembled although more than six degrees of freedom are fixed.
Fig. 1 shows a simple isoconstrained mechanism in one dimension
where the functional characteristic Y must not exceed a specified
threshold. On such a mechanism, the expression of this char-
acteristic Y is a function only of the dimensions x1 and x2. This kind
of problem is well-defined.

In contrast, Fig. 2 shows two configurations of an over-
constrained mechanism. Now the functional characteristic Y is a
function of the random variables and of the gap values. However,
following the realization of the random variables, gap values are
depending on the location of the contact point between part 1 and
part 2. In this case the tolerance analysis problem is
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overconstrained due to the multiple possible configurations of
gaps. Tolerance analysis methods must therefore take into account
the worst configurations of gaps to compute the probability of
failure. This operation is usually performed using an optimization
scheme [1]. This particularity turns out to deal with a system
probability assessment, the transition from one worst configura-
tion to another leading to an abrupt change of the limit-state
surface.

For an isoconstrained mechanism, computing the probability of
failure is simple because the functional condition is only expressed
as a function of the random variables which describes the geo-
metrical parameters. Classical reliability methods such as Monte
Carlo simulation or variance reduction techniques like importance
sampling [4] can be used to quickly compute the probability of
functional failure. For complex non-explicit applications, surrogate
models replacing the true functional condition may also be used in
simulations in order to save time. Numerous techniques used in
computer experiments exist in the literature such as quadratic
response surfaces [5,6], Kriging [7,8], support vector machines [9–
11] and polynomial chaos [12–14]. Approximation methods like
FORM [15,16] can also be performed. All methods are efficient
provided that the problem has a smooth limit-state surface which
is the case for an isoconstrained mechanism tolerance analysis
problem. For an overconstrained mechanism, these techniques,
except the Monte Carlo simulation, can no longer be used because

of a piecewise limit-state function coming from the different
configurations of gaps.

This paper intends to propose an efficient method to compute
the probability of failure of a tolerance analysis problem in the
case of overconstrained mechanisms. The technique is based on a
transformation of the tolerance analysis problem formulation
using the Lagrange duality property. This operation leads to an
auxiliary problem which is free from the optimization step. The
solution method includes a selective search algorithm so as to
determine the dominant failure situations among the numerous
possible ones. The probability of failure is eventually computed
using the First Order Reliability Method (FORM) for systems
[15,16].

The paper is organized as follows: Section 2 shows the current
tolerance analysis problem formulation whose probability is esti-
mated thanks to the Monte Carlo simulation. Section 3 describes
the mathematical transformation of the optimization problem into
its Lagrange dual. Section 4 is devoted to the comparison of the
proposed method with the Monte Carlo simulation on different
applications: first, the different transformation steps of the pro-
posed formulation are detailed on a simple academic example.
Then the method is applied to an overconstrained industrial ap-
plication modeled in three dimensions.

2. Tolerance analysis of overconstrained mechanisms

2.1. Problem formulation based on quantifiers

The presence of gaps in overconstrained mechanisms makes
the mechanical behavior difficult to model. Gaps are considered as
free variables, but they are not free of constraints because inter-
penetration between two surfaces of two parts of the mechanism
cannot be allowed. A set of NC interface constraints are therefore
defined to prevent surfaces from penetrating into each other. Let

X XX { , , }n1= … be the vector of random variables and
g gg { , , }m1= … the vector of gaps. Given a realization x of the

random vector X, these constraints are inequations written as
follows:

C x g{ ( , ) 0} (1)k k N1, , C
≤ = …

The functional condition equation of the mechanism is expressed
as follows:

C y Yx g( , ) 0 (2)f th= − ≥

where Y f x g( , )= is the response of the system (a parameter such
as a gap or a functional characteristic) modeled by a function f
characterizing the influences of the deviations and gaps on the
mechanism behavior [17].

The universal quantifier “∀” (all) is used to translate the con-
cept that the functional condition must be respected in all con-
figuration of the mechanism. The definition of the functionality of
the mechanism is given by Qureshi et al. [1]: “for all admissible
gap configurations of the mechanism, the geometrical behavior
and the functional requirement are respected”. For any realization

Nomenclature

Pf functional failure probability
yth threshold value
X geometrical deviation¼random variable
g gap variable¼optimization variable
C 0f ≥ functional condition

C 0f dual, ≥ functional condition in the dual form
C 0≤ interface constraints
NC number of interface constraints
Ns number of possible situations
N Nas s≤ number of admissible situations
N Nds as≤ number of dominant admissible situations

Fig. 1. Isostatic mechanism. The functional characteristic Y can be expressed as a
function of variables x1 and x2.
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