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a b s t r a c t

The Neumann series is a well-known technique to aid the solution of uncertainty propagation problems.
However, convergence of the Neumann series can be very slow, often turning its use highly inefficient. In
this article, a λ convergence parameter is introduced, which yields accurate and efficient Monte Carlo–
Neumann solutions of linear stochastic systems using first order Neumann expansions. The λ con-
vergence parameter is found as solution to a distance minimization problem, for an approximation of the
inverse of the system matrix using the Neumann series. The method presented herein is called Monte
Carlo–Neumannwith λ convergence, or simply MC–N λmethod. The accuracy and efficiency of the MC–N
λ method is demonstrated in application to stochastic beam bending problems.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The last few decades have witnessed tremendous develop-
ments in the modeling of mechanical and structural systems, due
to advances in computational mechanics. Numerical methods such
as finite elements, finite difference, boundary elements, etc., have
reached broad acceptability and wide coverage of applications.
New developments address the solution of complex, non-linear
problems. Multi-physics analyses allow investigation of new, un-
foreseen interaction effects between structures, soils, fluids, ther-
mo-dynamic and electric effects. Significant developments have
also been recently achieved in modeling uncertainty propagation
through mechanical and other types of systems.

The Monte Carlo simulation method remains a popular, yet
computationally expensive tool for analyzing uncertainty propa-
gation through mechanical systems. The computational cost of
Monte Carlo simulation can easily become prohibitive, for highly
non-linear problems and complex geometries. More efficient, in-
trusive methods have recently been developed, such as the sto-
chastic finite element method [1] or stochastic Galerkin Method
[2–6]. Intrusive methods have the inconveniency of requiring full
re-programming of conventional finite element software. Hence,
non-intrusive Monte Carlo simulation methods remain popular in
the solution of stochastic mechanics problems.

In linear stochastic mechanics problems, the numerical solu-
tion of a differential equation is replaced by the solution of a linear
system of algebraic equations (stiffness matrix). In this context,
when Monte Carlo simulation is employed, for each system reali-
zation, the stiffness matrix needs to be evaluated and inverted.
Depending on the dimensions of the linear system, and the re-
quired number of samples, this can become computationally in-
tensive. For a linear operator in finite dimensions,  : n n→ , the
inverse can be represented by the Neumann series, composed of
operators  : n n→ related to . In finite dimensions, linear op-
erators are matrices. The objective of using the Neumann series is
to replace the matrix inversions by a truncated series expansion.
However, depending on the number of terms in the Neumann
series, the number of operations to be performed may become
larger than required for the direct linear system solution. There-
fore, in this paper, a λ convergence parameter is introduced, with
allows accurate solutions to be computed using very low order
Neumann expansions.

First use of the Neumann series to solve stochastic problems in
mechanics goes back to the late eighties. Yamazaki [7] employed
the Neumann series to obtain samples of the displacement re-
sponse, for a plane elasticity problem with random Youngs mod-
ulus. Araújo and Awruch [8] derived the response on non-linear
static and dynamic problems, with random mechanical properties.
Also using the Neumann series, Chakraborty and Dey [9,10] ob-
tained expected value and variance of displacement responses
considering uncertain geometries and mechanical properties.
Chakraborty and Dey [11] applied the Neumann series to solve, in
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the frequency domain, two dynamic plate bending problems in-
volving uncertain parameters. Lei and Qiu [12] employed the
Neumann series to study uncertainty propagation in structures
using movement equations. Chakraborty and Sarkar [13] estimated
statistical moments of the transversal displacement response of
curved beams resting on Winkler foundations. Chakraborty and
Bhattacharyya [14] obtained response statistics for linear tri-di-
mensional elasticity problems, representing elastic properties as
Gaussian processes of the continuous. Li et al. [15] presented a
methodology to obtain solutions of linear systems, based on a
discretization of the stochastic problem. Schevenels et al. [16]
proposed a methodology based on Green functions, which was
compared to the Neumann series, in a wave propagation problem
on random Winkler foundation. In all references above, the Neu-
mann series was employed in a conventional fashion, as an alter-
native to solve the stochastic problem. No studies have been found
in the literature addressing the efficiency of the Neumann ex-
pansion, or trying to improve its accuracy using low order
expansions.

This article advances the state of the art by proposing a λ
convergence parameter, with significantly improves accuracy of
matrix inversion using low (first) order Neumann expansions.
Being of low order, such solutions are also significantly more ef-
ficient than conventional Monte Carlo or conventional, higher or-
der Neumann expansions. The accuracy and efficiency of the
proposed Monte Carlo–Neumann with λ convergence, or simply
MC–N λ method, are demonstrated in application to stochastic
beam bending problems.

2. Mathematical formulation of the stochastic system/un-
certainty propagation problem

The formulation of many problems of mechanics derives from
well-known physical principles such as conservation of move-
ment, first and second laws of thermodynamics, among other. In
linear solid mechanics, equilibrium equations are often derived
from the minimization of functionals. One of the best known is the
Principle of Minimal Potential Energy, for which the functional
minimization yields the Euler–Lagrange equations, and the es-
sential and natural boundary conditions. In this paper, a linear
elliptic boundary value problem is addressed, whose operator
appears in beam and plate bending problems, or in stationary
head conduction problems. The stochastic uncertainty propagation
problem is defined in a P( , , )Ω probability space, where Ω is the
sample space, is a s-algebra of events, and P is a probability
measure.

The linear stochastic uncertainty propagation problem consists
in finding the response process for the following elliptic problem,
with coefficients given by stochastic processes

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

( )( )L P H D H D

x

f x x D P a e

Findu , , ; ( ) ( ) , such that

( )( , )

( , ), ( , ) ( , , ), . . ;

subject to boundary conditions. (1)

m m

m

2 2
0

,

∑
Ω

κ ω

ω ω Ω

∈ ∩

∂ ∂

= ∀ ∈ ×

α β
α αβ β

≤

where f ( , )⋅ ⋅ is a source term. The random character of the solution
is given by the set of coefficients { } m,καβ α β < . In solid mechanics
problems, these coefficients can be associated to stiffness or
thermal conductivity. In order to establish the conditions for ex-
istence and uniqueness of the solution to the problem stated in Eq.
(1), the following hypothesis are required:
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Hypothesis H1 ensures that coefficients { } m,καβ α β < be differ-
entiable, positive and uniformly limited in probability [17]. Hy-
pothesis H2 ensures that the source term has finite variance. From
Eq. (2), the Lax-Milgram lemma can be called upon, in order to
guarantee existence and uniqueness of the solutions or system
response realizations, for samples of random coefficients
{ } m,καβ α β < and of the source term. A formal study of existence and
uniqueness of the solutions is out of scope for this paper, but can
be found in Refs. [2–6,18].

The great benefit of employing numerical methods in the so-
lution of problems like Eq. (1) is reducing problem complexity. In
general, solution of a stochastic differential equation is replaced by
the solution of a system of algebraic equations. The Galerkin
method is one of the most popular. Numerical solutions are de-
rived from the Abstract Variational Problem (AVP) derived from

Eq. (1). For the kth sample { }( )x, ( )kκ ωξαβ αβ , the AVP is defined in
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Hence, for a fixed sample of coefficients { }( )x, ( )kκ ωξαβ αβ , solu-

tion of the AVP corresponds to one realization of the operator
defined in Eq. (1). From the AVP, the Galerkin solution is con-
structed. The approximation space V span{ , , }m m1φ φ= … is obtained

from a subset of V, ( )V span{ }i i
V

φ= ∈ . Without loss of generality,

the source term is considered deterministic in this paper. For each
sample of coefficients, solutions to the AVP are measurable; and
from the Doob–Dynkin lemma, the response process depends on
the random variables which describe uncertainty in the coeffi-
cients; hence ( )u u x, ( )kωξ= αβ . For the kth realization of system

coefficients, the Galerkin method yields approximated numerical
solutions u( )m , for the AVP in Eq. (3)
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For the kth sample, the approximate variational problem is
defined as
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By replacing Eq. (6) in Eq. (3), a linear system of algebraic
equations is obtained
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