
Stochastic analysis of the critical velocity of an axially moving cracked
elastic plate

M. Tirronen a,n, N. Banichuk a,b, J. Jeronen a, T. Saksa a, T. Tuovinen a

a Department of Mathematical Information Technology, University of Jyväskylä, P.O. Box 35 (Agora), FI-40014, Finland
b Institute for Problems in Mechanics RAS, Prospect Vernadskogo 101, Bld. 1, 119526 Moscow, Russian Federation

a r t i c l e i n f o

Article history:
Received 4 November 2013
Accepted 4 April 2014
Available online 13 April 2014

Keywords:
Uncertainty
Fracture
Stability
Moving material
Plate
Paper

a b s t r a c t

In this study, a probabilistic analysis of the critical velocity for an axially moving cracked elastic and
isotropic plate is presented. Axially moving materials are commonly used in modelling of manufacturing
processes, like paper making and plastic forming. In such systems, the most serious threats to
runnability are instability and material fracture, and finding the critical value of velocity is essential
for efficiency. In this paper, a formula for the critical velocity is derived under constraints for the
probabilities of instability and fracture. The significance of randomness in different model parameters is
investigated for parameter ranges typical of paper material and paper machines. The results suggest that
the most significant factors are variations in the crack length and tension magnitude.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In industry, there are many systems the behaviour of which can
be described by the mathematical model of an axially moving
material. Thus, during the last few decades, the mechanics of such
materials have aroused much interest among researchers. Tradi-
tionally, the studies of axially moving materials are based on a
deterministic approach, although in reality, the problem para-
meters are not known deterministically. In industrial paper man-
ufacturing, which is one of the application areas of axially moving
materials, uncertainty factors include, e.g., the strength of the
paper web, variation of tension with respect to space and time in
the press system, and defects, which vary in their geometry and
location in the web. These factors are considerable: according to
Uesaka [1], the majority of web breaks in paper production are
caused by tension variations, combined with strength variations of
the paper web. Wathén [2] discusses the effect of flaws of paper on
web breaks and, according to him, even a seemingly flawless paper
can fail at very low tensions due to stress concentrations caused by
discontinuities, e.g., cuts and shives, in structure.

Finding the optimal value of velocity for an axially moving
material is essential, when the efficiency of the corresponding
manufacturing process is considered. The most critical threats to
good runnability of such a system are instability and material

fracture, and on these phenomena a change in the tension magni-
tude has opposite effects. An increase in tension has a stabilizing
effect [3], but high tension may lead to growing or arising of
cracks. Web tension too low or too high may cause a web break,
which deteriorates production efficiency.

The modelling of vibrations of travelling elastic materials has
interested many researchers. The first paper on the subject dates
from 1897, when Skutch published a paper [4] concerning the
axially moving string. The first papers in English were published in
the 1950s, when Sack [5] and Archibald and Emslie [6] studied the
axially moving string model. Since then, many researchers have
continued the studies of moving elastic material. E.g., Wickert and
Mote [7] studied the stability of axially moving strings and beams
using modal analysis and Greens function method. The stability of
travelling two-dimensional rectangular membranes and plates has
been studied, e.g., by Lin [8] and Banichuk et al. [3]. A more
extensive literature review of the history of the studies concerning
deterministic elastic models can be found in [3], the results of
which we also exploit in this study. In the recent studies concern-
ing axially moving plates, material properties such as orthotropi-
city [9,10] or viscoelasticity [11,12] have been taken into
consideration and their effects on the plate behaviour have been
investigated.

In addition, there are studies considering stationary plates with
random parameters. For example, the free transverse vibrations of
elastic rectangular plates with random material properties were
considered and statistical characteristics of the random eigenva-
lues were determined by Sobczyk [13]. Wood and Zaman [14]
considered a collection of elastic rectangular plates with random
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inhomogeneities vibrating freely under simply supported bound-
ary conditions. Soares [15] considered uncertainty modelling of
plates subjected to compressive loads.

The field of fracture mechanics was developed by Irwin [16],
based on the early papers of Inglis [17], Griffith [18] and Wester-
gaard [19]. Various deterministic analyses of vibrations and
stability of stationary cracked beams and plates exist in the
literature. For a literature review, we refer to [20].

As far as the authors know, axially moving materials have been
studied in a stochastic setup only in [21,22]. In these studies, the
critical velocity of an axially moving plate was derived in the case
in which there is a random length crack on the plate, or the
tension, to which the plate is subjected, varies randomly. This
research extends these studies by introducing several other para-
meters as random variables simultaneously in the model. In this
paper, we also compare the effect of introducing variation
between different problem parameters, in order to decide the
randomness of which parameters is the most significant in terms
of the critical velocity. For the analysis, we have chosen the setup
and parameter ranges to be applicable for paper material and
paper making.

The formula for the critical velocity of the plate is derived
under constraints for instability and fracture. Depending on the
distributions of the problem parameters, numerical methods may
be needed in solving the critical velocity. In the paper industrial
example, simultaneously introducing several problem parameters
as random variables leads to the use of numerical methods. Due to
its simplicity and accuracy, we use Monte Carlo simulation to solve
the problem with several random variables.

2. Critical velocity of a travelling plate

We consider a rectangular part of an elastic and isotropic band,
which is moving at a constant velocity V0 between supporting
rollers. Denoting the part as

D¼ fðx; yÞ : 0oxoℓ; �boyobg; ð1Þ
where ℓ and b are prescribed parameters of length and width, the
plate is assumed to travel in the x direction. The supporting rollers
are located at x¼0 and x¼ ℓ. (See Fig. 1.)

The considered part D is represented as a thin elastic plate
having constant thickness h, Poisson ratio ν, Young modulus E,
and bending rigidity

D¼ Eh3

12ð1�ν2Þ: ð2Þ

The mass of the plate per unit area is denoted by m. It is further
assumed that the plate is subjected to homogeneous tension T
acting in the x direction.

We consider the case in which there is a single crack in the
plate. The length of the crack is denoted by ξ. (See also Fig. 1.)

2.1. Characterization of instability of the plate

We first briefly present a deterministic stability analysis for a
travelling plate without a crack. Especially, we are interested in
critical regimes, where the plate approaches its maximum stable
velocity. Details of the analysis can be found in [3].

We perform a standard dynamic analysis (see, e.g., [23]). The
transverse displacement of the travelling plate is described by the
deflection function w, which depends on the space coordinates x,
y and time t. It is assumed that the absolute values of the
deflection function w and its derivatives are small. The Kirchhoff
plate theory is applied. To study the dynamic behaviour of the
plate, the following equation for the travelling plate is used:

∂2w
∂t2

þ2V0
∂2w
∂x ∂t

þðV2
0�C2Þ∂

2w
∂x2

þD
m
Δ2w¼ 0; ð3Þ

where

C ¼
ffiffiffiffiffi
T
m

r
and ð4Þ

Δ2w¼ ∂4w
∂x4

þ ∂4w
∂x2 ∂y2

þ∂4w
∂y4

: ð5Þ

As boundary conditions, the classical simply supported and free
boundary conditions [24,25] are used. The simply supported
boundary conditions read as

ðwÞx ¼ 0;ℓ ¼ 0;
∂2w
∂x2

� �
x ¼ 0;ℓ

¼ 0; �bryrb; ð6Þ

and the equations for the boundaries free of tractions can be
presented as follows:

∂2w
∂y2

þν
∂2w
∂x2

� �
y ¼ 7b

¼ 0; 0rxrℓ; ð7Þ

∂3w
∂y3

þð2�νÞ ∂3w
∂x2 ∂y

� �
y ¼ 7b

¼ 0; 0rxrℓ: ð8Þ

The solution of the dynamic boundary value problem of (3)–(8)
can be represented as

wðx; y; tÞ ¼Wðx; yÞei ~ωt ¼Wðx; yÞe~st ; ð9Þ
where ~ω is the frequency of small transverse vibrations and ~s ¼ i ~ω
is the complex characteristic parameter; ~s ¼ Re ~sþ i Im ~s.

If the parameter ~s is purely imaginary and ~ω is real, the plate
performs harmonic vibrations of a small amplitude and its motion
can be considered stable. If the real part of ~s becomes positive, the
transverse vibrations grow exponentially and, consequently, the
behaviour is unstable (see Fig. 2). It can be shown by dynamic
analysis that the travelling plate undergoes divergence instability
at a sufficiently high speed [8] and thus it is sufficient to perform
static analysis, i.e., study the case with ~s ¼ 0. (See also Fig. 2.)

The stationary equations for W are, substituting (9) into (3) and
setting ~s ¼ 0,

ðmV2
0�TÞ∂

2W
∂x2

þD
∂4W
∂x4

þ2
∂4W

∂x2 ∂y2
þ∂4W

∂y4

� �
¼ 0 ð10Þ

with boundary conditions (6)–(8). We rewrite (10) as

�ℓ2

π2

∂4W
∂x4

þ2
∂4W

∂x2 ∂y2
þ∂4W

∂y4

� �
¼ λ

∂2W
∂x2

; ð11Þ
Fig. 1. A travelling elastic plate with a crack.
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