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a b s t r a c t

This paper focuses on the problem of stochastic instability resulting from the action of dissipation and
random excitations. The energy–momentum theorem is extended from deterministic Hamiltonian
systems to stochastic Hamiltonian systems, and then a weak energy–momentum method is presented
for stochastic instability analysis of random systems suffering destabilizing effects of dissipation and
random excitations. The presented method combines the stochastic averaging procedure to formulate
the equivalent systems of random systems for obtaining the stochastic instability criteria in probability,
and can be applied to a class of systems including random gyroscopic systems with positive or negative
definite potential energy. As an example, the stochastic instability conditions of a Lagrange top subjected
to random vertical support excitations are formulated to express the stochastic instability induced by
dissipation and random excitations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of a dissipation-induced instability was derived
from the classical Treatise on Natural Philosophy of Thomson and
Tait [1], whose results were later proved by Chetayev [2] and
advanced by Merkin [3]. In the past three decades, the dissipation-
induced instability phenomena have been investigated in many
literatures [4–16]. A multitude of physical examples and applica-
tions in those literatures has demonstrated that the effect of
dissipation is one of the paramount ones governing instability
mechanisms in nature, and indicated that the determination of the
stability of relative equilibriums of dissipated Hamiltonian systems
is a central and interested problem. Marsden et al. [4], Simo et al.
[5] and Marsden [6] have presented a general approach to the
stability analysis of relative equilibriums in Hamiltonian systems.
This approach, which was referred to as an energy–momentum
theorem/method, overcomes the deficiency of the energy–Casimir
method [17–19]. The energy–momentum method is based on the
use of the augmented Hamiltonian (Hamiltonian plus a conserved
quantity). One can think of this method as a synthesis of the ideas
of Arnold for the group variable, and those of Routh and Smale for
the internal variables [7]. A series of papers [7–9,11–13] develop-
ing and applying the energy–momentum method have illustrated

that this method has a nontrivial impact on the modern approach
to mechanics including dynamical systems theory and geometry.

In all the investigations discussed above, the deterministic
system was employed to analyze the dissipation-induced instabil-
ities. The energy–momentum method is also aimed at the deter-
ministic Hamiltonian system. However, random excitations are
existing and inevitable in many engineering and physical applica-
tions. It is well known that the influence of random excitations
plays an important role in system stability analysis. Thus, a study
on the stochastic instability induced by both dissipation and
random excitations is significant and necessary. It indicates
that the energy–momentum theorem/method needs to be
extended from deterministic Hamiltonian systems to stochastic
Hamiltonian systems in order to study the stochastic instability of
systems suffering destabilizing effects of dissipation and random
excitations.

Gyroscopic systems, as main research targets in dissipation-
induced instability problems, find wide usage in engineering
applications. The stochastic stability of gyroscopic systems has
been investigated by some researchers [20–24]. Namachchivaya
[20] studied the mean square stability of a gyropendulum under
random vertical support excitations with the aid of the stochastic
averaging procedure. Using the procedure established by Namach-
chivaya et al. [25], the asymptotic expansion for the maximal
Lyapunov exponent of a stochastic gyroscopic system was calcu-
lated and a rotating shaft system subjected to white noise excita-
tions was analyzed in Ref. [21]. Zhu [26] and Zhu et al. [27]
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proposed a stochastic averaging method for quasi-integrable-
Hamiltonian systems and combined it with Khasminskii's pro-
cedure to formulate the asymptotic expression of the largest
Lyapunov exponent for investigating the stochastic stability of
quasi-integrable-Hamiltonian systems. Then the presented
method was applied to evaluate the largest Lyapunov exponent of
a gyropendulum subjected to random vertical support-excitation in
Ref. [22]. The moment stability and almost-sure stability of a
stochastic gyroscopic system were obtained and applied to study
the stochastic stability of a pipe conveying pulsating fluid by Vedula
et al. [23]. Wang et al. [24] employed an asymptotic approach based
on the stochastic averaging method to investigate the mean square
stability of a MEMS gyroscope subjected to stochastic angular rates.
However, in the above studies on stochastic gyroscopic systems, the
prerequisite on stochastic stability analysis is that the systemmatrix
representing the terms arising from the potential energy is positive
definite. In other words, the existing studies aim at a stochastic
gyroscopic system with positive definite potential energy as the
precondition. Therefore, it is difficult to employ those mentioned
methods in studying stochastic stability of a stochastic gyroscopic
system with negative definite potential energy. This raises the need
for the development of stochastic stability theorem and method.

In this paper, the energy–momentum theorem/method is
extended to stochastic Hamiltonian systems, and then a weak
energy–momentum method is presented for stochastic instability
analysis. This method, which overcomes the deficiency of the
existing approaches, can be used to analyze the stochastic
instability in probability of random gyroscopic systems with
positive or negative definite potential energy. With the aid of the
presented method, a Lagrange top under the destabilizing effects
of dissipation and random excitations are analyzed as an example.

2. The weak energy–momentum method

The energy–momentum theorem/method [4–6] is introduced
to discuss the dissipation-induced instability of deterministic
systems. In studying stochastic instability induced by both dis-
sipation and random excitation, a natural step involves the
extension of the energy–momentum theorem. Thus, a more
general theorem originating from the energy–momentum theo-
rem is accounted, and a new method, dubbed as the weak energy–
momentum method, for stochastic instability analysis is presented
in this section.

2.1. The extended energy–momentum theorem

To illustrate the effect of dissipation and random excitations on
system stochastic instability, we study a stochastic Hamiltonian
system with the aid of a synthesis of the energy–momentum
theorem [4–6,12] and the theory of stochastic Hamiltonian systems
[28]. Consider a stochastic Hamiltonian system on a configura-
tion manifold Q with elements denoted by qAQ , and canonical
phase space P, which is the cotangent bundle P ¼ TnQ . The pair
ðq; pÞAQTn

qQ of the canonical cotangent coordinates is identified
with zATnQ where pATn

qQ is the associated momentum. The
tangent space TqQ and Tn

qQ are in duality via a non-degenerate
paring denoted by 〈U ; U 〉. Assume that the stochastic Hamiltonian
system, with the Hamiltonian function denoted by H : P-ℝ,
possesses symmetry induced by a Lie group G with a Lie algebra
ℑ, which acts on P by canonical transformations.

It is defined that a function ΘðξÞ is said to be a strongly
(respectively, weakly) conserved quantity of a stochastic Hamilto-
nian system if for each continuous symmetry ξAℑ we have that
ΘðξÞ ¼Θðξ0Þ (respectively, E½ΘðξÞ� ¼ E½Θðξ0Þ�, for any stopping
time) where E½U � is the expectation operator [28]. If the stochastic

Hamiltonian system possesses a strongly (respectively, weakly)
conserved quantity ΘðξÞ with the same dimension as the group G
and ℑn defines as the dual of the Lie algebra ℑ, a momentum map
is defined by Θ : P-ℑn for the action of G on P, which reproduces
as special cases the usual angular and liner momentums.

Consider a relative equilibrium zeAP, μ¼ΘðzeÞ; thus, there is a
ξAℑ such that ze is a critical point of the augmented Hamiltonian
HξðzÞ ¼HðzÞ� ΘðzÞ�μ; ξ

� �
, i.e., δHξðzeÞ ¼ 0. This is same as ze being

a critical point of the energy–momentum map HΘ : P-ℝℑn.
Choose a subspace S� kerDΘðzeÞ that is transverse to the Gμ orbit
within kerDΘðzeÞ. According to the stochastic Dirichlet's criterion
[28], the energy–momentum theorem [4–6] can be extended as
follows: If the second variation of the augmented Hamiltonian,
δ2HξðzeÞ, is definite on S and Hξ is a strongly (respectively, weakly)
conserved quantity, then ze is Gμ-orbitally almost surely
stable (respectively, stable in probability) in Θ�1ðμÞ and G-orbi-
tally almost surely stable (respectively, stable in probability) in P.
If δ2HξðzeÞ is indefinite, then the relative equilibrium gets desta-
bilized after the addition of dissipation.

Notice that the definitions of strongly and weakly conserved
quantities coincide for deterministic systems with the standard
definition of conserved quantity. The energy–momentum theorem
[4–6] for deterministic systems is consistent with the proposed
theorem related to strongly conserved quantities. Therefore, the
extended theorem mentioned above is a more general energy–
momentum theorem.

In generally, stochastic Hamiltonian systems possess weakly
conserved quantities. It is important to discuss the extended
energy–momentum theorem related to weakly conserved quan-
tities, and use it for developing an analytical method for stochastic
instability analysis. Therefore, the new method, grounded on the
extended energy–momentum theorem, would be dubbed as the
weak energy–momentum method. Its analytic procedure for
stochastic instability analysis of gyroscopic systems is illustrated
in the following.

2.2. Stochastic instability induced by dissipation and random
excitations

According to the proofing in Section 2.1, it is clear that the weak
energy–momentum method can be applied to a class of stochastic
systems with positive or negative definite potential energy since
whether the potential energy is positive or negative definite is not
a prerequisite or restrictive condition during the proving proce-
dure. Considering the existing methods used for stochastic stabi-
lity analysis of a stochastic gyroscopic system with positive
definite potential energy are difficult to employ in studying
stochastic stability of a stochastic gyroscopic system with negative
definite potential energy, we will aim at a stochastic gyroscopic
system with negative definite potential energy in the following
studies, and the corresponding expressions with regard to a
stochastic gyroscopic system with positive definite potential
energy can be obtained analogically.

Consider a stochastic gyroscopic system with negative definite
potential energy. The Lagrangian equations of motion of the
gyroscopic system with n (even positive integer) degree of free-
dom is of the form

mii €qiþ2gij _qjþdii _qiþðkii�niiÞqi ¼ εsiiξðtÞqi; i; j¼ 1;2; :::;n: ð1Þ

where q¼ q1 q2 ::: qn
n oT

is the generalized displacement

vector. M ¼ diagðmiiÞ is the constant and positive definite matrix
of mass or moment of inertia. G¼ ½gij� is the constant and anti-
symmetric gyroscopic matrix. D¼ diagðdiiÞ is the damping matrix
caused by dissipative forces. Kk ¼ diagðkiiÞ, Kn ¼ diagðniiÞ and
Ks ¼ diagðsiiÞ are the stiffness matrices related to different items
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