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a b s t r a c t

In this paper a novel algorithm is presented for modal decomposition using multiple channels of measure-
ments of dynamical systems. The algorithm is operated in a two-stage manner. In the first stage, the
measurement noise and modeling error are filtered out to obtain the maximum common components, which
turn out to be identical to the principal components. However, these maximum common components are not
the modal coordinates because it is usually impossible to measure all degrees of freedom. Therefore, the partial
mode shape matrix does not possess any orthogonality condition. As a result, the maximum common
components will be transformed to the modal coordinates in the second stage using band-pass filter and
principal component analysis. The proposed method is computationally very efficient and it does not require a
finite element model of the dynamical system. Two simulated examples are presented to demonstrate the
efficiency and robustness of the proposed algorithm. Finally, an application using the acceleration field
measurements from the Canton tower in Guangzhou is presented.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Response time series analysis is an important task in various
disciplines of science and engineering and it has attracted substantial
attention for decades. To resolve the shortcomings of the standard
discrete Fourier transform, a number of well-known transformations
have been developed. Examples include the short-time Fourier
transformation [22] that considers a moving window for the Fourier
transform. The wavelet transformation [29,15,17] allows for multi-
resolution analysis. Instead of direct transformation techniques, a
traditional approach is to analyze the nonstationary response with
system identification techniques assuming a prescribed model. Exam-
ples include the Kalman filtering [41,18,6,25,40], approaches using
extra model constraints [4,37], Bayesian approach [2,36,35,39], particle
filter approach [9], and the channel-expansion technique [8].

Blind source separation [3] has received increasing attention in
recent years. Since the nature of this problem is underdetermined,
different extra conditions need to be imposed, e.g., independence or
sparsity. As a result, various types of methods have been developed
and it includes the principal component analysis [27,28,5], indepen-
dent component analysis [13], and non-negative matrix factorization
[10], etc. Modal decomposition can be viewed as a branch of blind
source separation. Mallat and Zhang [19] proposed the matching
pursuits algorithm to decompose signals into linear combination of a

dictionary of redundant Gabor functions. The empirical mode decom-
position [12] is one of the most popular methods in this area. It
provides a direct approach to decompose the measured signal into
intrinsic mode functions. Then, the intrinsic mode functions can be
analyzed with various tools, e.g., the Hilbert–Huang transform to
obtain the instantaneous frequency of the signal [12,34]. This has been
used for a number of applications in structural dynamics problems,
including structural damage detection [32,33], representation of earth-
quake ground motion [30], adaptive structural vibration control [21]
and signal compression [11], etc. On the other hand, Chen and Kareem
[7] proposed a complex modal decomposition approach for coupled
buffeting response of bridges. This frequency-domain approach
enhances the computational efficiency by avoiding system matrix
inversion at each frequency. Wu and Huang [31] proposed the
ensemble empirical mode decomposition. It utilizes the artificially
added white noise to provide a uniform reference frame in the time–
frequency space. By doing so, subjective criterion selection in the
intermittence test for the original empirical mode decomposition
algorithm can be eliminated.

In this paper, a novel algorithm is proposed for modal decom-
position using multiple channels of measurements. The proposed
method is a two-stage approach and it does not require a finite
element model of the dynamical system. In the first stage, the
maximum common components are obtained. They will be shown
identical to the principal components so they can be obtained
efficiently with simple eigenvalue analysis of small size. Measure-
ment noise and modeling error can be filtered out at this stage.
In the second stage, the maximum common components obtained
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in the previous stage are converted to the modal coordinates. It will be
shown that this stage is necessary because the maximum common
components/principal components are not the modal coordinates.
This is due to the limited observed degrees of freedom so the
orthogonality does not apply to the partial mode shape matrix.

The structure of this paper is outlined as follows. In Section 2, a
simple example is used to introduce the underlying concept of the
proposed modal decomposition algorithm. Problems encountered
in direct application of this concept for practical circumstances
will be presented. In Section 3, the proposed method is presented
for modal decomposition using multiple channels of measure-
ments. In the first stage, the maximum common components,
which are identical to the principal components, are extracted.
In the second stage, the modal coordinates are computed from the
maximum common components. Finally, a summary of the pro-
posed algorithm is given. In Section 4, three examples are
presented to illustrate the effectiveness and robustness of the
proposed method. The first two examples are selected to cover
cases with simulated signals so that the true modal coordinates
are available for comparison. Therefore, the accuracy and robust-
ness of the proposed algorithm can be assessed. Finally, accelera-
tion field measurements of the Canton tower in Guangzhou are
used to illustrate the application in a real world example.

2. Basic concepts and difficulties

In this section, a simple example of two cases is used to illustrate
the underlying concept of the proposed method. In Case 1, we
introduce the concept of maximum common components, which will
be shown identical to principal components in Section 3. It will be
demonstrated that the maximum common components can be used
for modal decomposition. However, in Case 2, the problem in applying
the maximum common components or the principal components for
modal decomposition in general situation will be illustrated.

2.1. Case 1

2.1.1. Consider two measured signals with tA[0,2π]

x1ðtÞ
x2ðtÞ

" #
¼Φξ¼ 4 1

2 �2

� �
sin t
sin 2t

� �
¼ 4 sin tþ sin 2t

2 sin t�2 sin 2t

� �
ð1Þ

These signals are linear combinations of two sinusoidal functions
(regarded as modal coordinates herein) with frequencies 1 and 2 rad/s,
respectively. From the measurement of x1ðtÞ and x2ðtÞ in the time
interval ½0;2π�, we attempt to reconstruct the two modal coordinates
ξ, i.e., sin t and sin 2t. In order to achieve this goal, the maximum
common components, denoted by yðtÞ, are extracted from these two
signals such that the residuals defined below are minimized:

ε1ðtÞ ¼ x1ðtÞ�ϕ1yðtÞ
ε2ðtÞ ¼ x2ðtÞ�ϕ2yðtÞ

ð2Þ

The unknown parameters ϕ1 and ϕ2 are introduced to take into
account the different contribution of the maximum common
component to the two channels of measurements. In order to
obtain the optimal solution for ϕ1, ϕ2 and yðtÞ, one can minimize
the following objective function:

Jðy;ϕ1;ϕ2Þ ¼
Z 2π

0
Iðy;ϕ1;ϕ2Þdt �

Z 2π

0
f½x1ðtÞ�ϕ1yðtÞ�2þ½x2ðtÞ�ϕ2yðtÞ�2gdt

ð3Þ

It is obvious that there are infinitely many solutions for ϕ1, ϕ2

and yðtÞ because any combination of αϕ1, αϕ2 and yðtÞ=α gives

identical extraction results for nonzero α. Therefore, the solution
for ϕ1yðtÞand ϕ2yðtÞ will be considered instead of individual values
for ϕ1, ϕ2 and yðtÞ. The underlying concept of the maximum
common components is to be extracted such that the residuals
are minimized and this is different from the principal component
analysis to project the measurements to the principal directions
such that the 2-norm of the projection is maximized [26,13].
However, it will be shown in the next section that the maximum
common components and the principal components are equivalent.

By using the calculus of variation, the optimal solution can be
obtained by taking the variation of the objective function to be
zero, i.e., δJ ¼ 0. This is equivalent to solving: ð∂Iðy;ϕ1;ϕ2Þ=∂yÞ ¼ 0,
where the function Iðy;ϕ1;ϕ2Þ is defined in Eq. (3), and the
following relationship is readily obtained:

ynðtÞ ¼ 1
ϕ2
1þϕ2

2

½ð4ϕ1þ2ϕ2Þ sin tþðϕ1�2ϕ2Þ sin 2t� ð4Þ

Substituting ynðtÞ back to Eq. (3), the objective function can be
simplified as:

Jðyn;ϕ1;ϕ2Þ ¼
π

ðϕ2
1þϕ2

2Þ
ð8ϕ2

1�12ϕ1ϕ2þ17ϕ2
2Þ ð5Þ

Then, the values of ϕ1 and ϕ2 can be obtained by solving
ð∂Jðyn;ϕ1;ϕ2Þ=∂ϕjÞ ¼ 0, j¼ 1;2 and it turns out that the two equations
are merged to: ðϕ1�2ϕ2Þ ð2ϕ1þϕ2Þ ¼ 0. Therefore, ϕ1 ¼ 2ϕ2 or
ϕ1 ¼ �ϕ2=2. As a result, there are two sets of solutions:

ϕn

1y
nðtÞ ¼ 4 sin t and ϕn

2y
nðtÞ ¼ 2 sin t ð6Þ

ϕn

1y
nðtÞ ¼ sin 2t and ϕn

2y
nðtÞ ¼ �2 sin 2t ð7Þ

so the modal coordinates in ξðtÞ can be recovered from the maximum
common components (or equivalently the principal components) in
this case. However, the success of this example relies on the
orthogonality of the matrix Φ in Eq. (1), i.e., ΦTΦ¼ I, the identity
matrix. It will be shown next that this is usually not the case in
practice.

2.2. Case 2

In the second case, the same example will be repeated with a

different matrix Φ¼ 4 1
2 �1

� �
. Following the same procedure, the

maximum common components are obtained:

ϕn

1y
nðtÞ ¼ ð67

ffiffiffiffiffiffi
85

p
Þ

ð67
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85

p
Þ2þ72½ð3874
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85

p
Þ sin tþð�17
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85

p
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ϕn
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nðtÞ ¼ 7

ð67
ffiffiffiffiffiffi
85

p
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ffiffiffiffiffiffi
85

p
Þ sin tþð�17

ffiffiffiffiffiffi
85

p
Þ sin 2t�

ð8Þ
In this case, the two modal coordinates cannot be decomposed.

Unfortunately, this is usually encountered in practice. First, for
monitoring projects, it is very rare that the full measurements at all
degrees of freedom can be obtained. Therefore, the vectors in the
matrix Φ in Eq. (1) contain only some elements of the mode shapes so
the well-known orthogonality conditions are not applicable for this
partial mode shape matrix. Second, even when full measurements at
all degrees of freedom are available, the column vectors ϕ1; :::;ϕM will
follow ϕT

mMϕm' ¼ 0, if mam' where M is the mass matrix of the
dynamical system. However, ϕT

mϕm'a0 in general. As a result, if the
mass matrix is known, the aforementioned procedure (or the principal
component analysis) will have to be modified for a mass matrix
weighted inner product in order to perform the modal decomposition.
In the next section, a novel decomposition method, which is inspired
from the underlying concept of this example, will be presented to
overcome these difficulties.
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