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a b s t r a c t

This paper introduces a family of stationary multivariate spatial random fields with D scalar components
that extend the scalar model of Gibbs random fields with local interactions (i.e., Spartan spatial random
fields). We derive permissibility conditions for Spartan multivariate spatial random fields with a specific
structure of local interactions. We also present explicit expressions for the respective matrix covariance
functions obtained at the limit of infinite spectral cutoff in one, two and three spatial dimensions. Finally,
we illustrate the proposed covariance models by means of simulated bivariate time series and two-
dimensional random fields.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The last thirty years have witnessed an expanding interest in
spatial random field models [6,7,41] and their applications in
various scientific fields that include statistics, astrophysics, hydrol-
ogy, ecology, medical geography, environmental and petroleum
engineering, remote sensing, and geographical information sys-
tems (GIS). This interest is motivated by the growing availability of
spatial data and the need for accurate and flexible models of
spatial dependence. Random field models are also applicable in
mechanical engineering and computational mechanics problems
[24,15,28,29,37]. There is continuing interest in the development
and mathematical properties of vector or multivariate random fields
(RFs for short) [36,32,30,10,13,4,31,34,35,39].

In the following, D denotes the dimension of the multivariate
RF, whereas d denotes the dimension of space in which the vector
field is defined. It is useful to classify multivariate RFs in two
different categories. The first category includes RFs that represent
distinct physical vectors, i.e., variables with directional depen-
dence, such as the velocity or the force on a moving particle. The
second category involves RFs that represent composite state
vectors; the latter may comprise a number of scalar and/or vector
variables, e.g., temperature, pressure, and velocity. This category
also includes time series ðd¼ 1Þ of the same physical variable

(e.g., wind speed), sampled at D different locations [9]; each
location can be considered as a component of a D-variate vector.
For physical vectors D¼d, whereas for composite vectors it is
possible that Dcd; in addition, the vector components may have
different units and quite different magnitudes. The matrix covar-
iance is given by a symmetric D�D matrix which involves
DðDþ1Þ=2 component functions. The definition of suitable matrix
covariance functions is essential for studies of correlated multi-
component systems, and we expect that it will play a significant
role in the analysis of scientific and engineering big data, including
data from computational fluid dynamics simulations.

Let us denote by vT ¼ ðv1;…; vDÞ the transpose of a D-dimen-
sional vector v and by v � v0 ¼∑D

i ¼ 1viv
0
i the inner product of

the vectors v and v0. The vector sARd denotes the position
within a spatial domain of interest DDRd. In addition, let
Xðs;ωÞ ¼ ðX1ðs;ωÞ;…;XDðs;ωÞÞT : Rd-RD be a zero-mean multi-
variate RF of D components Xpðs;ωÞ; p¼ 1;…D, defined over the
probability space ðΩ;F ; PÞ and indexed by the spatial variable s
and the state variable ω. The realizations or sample paths of this
RF will be denoted by xðsÞ ¼ ðx1ðsÞ;…; xDðsÞÞT , whereas E½�� will
represent the expectation over the ensemble of the random field
states. In the following we will focus on zero-mean RFs with
matrix covariance function

Cp;qðs1; s2Þ≔E½Xpðs1;ωÞXqðs2;ωÞ�; p; q¼ 1;…; d;

the elements of which depend only on the lag vector s1�s2ARd.
Such RFs are known as weakly stationary, wide-sense stationary
or statistically homogeneous. We will denote the matrix spectral
density by ~Cp;qðkÞ, where k is the wavevector in reciprocal
(Fourier) space.
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If the multivariate RF follows the Gaussian distribution, the first
two moments suffice to fully define the joint probability density
function (pdf). Since we assume—without loss of generality—that
the RF expectation is zero, one needs to specify the matrix covariance
function

Rd 3 r↦CðrÞ≔½Cp;qðrÞ�Dp;q ¼ 1;

where r is the lag vector between any two points of the spatial
domain, the functions Cp;pð�Þ are the autocovariances of the marginal
processes Xpðs;ωÞ, p¼1,…,D, and the functions Cp;qð�Þ, where qap
are the cross-covariances between the elements Xpðs;ωÞ and Xqðs;ωÞ.

Scalar and matrix covariance functions must be nonnegative
definite. A scalar function Cðs1; s2Þ is nonnegative definite if for
all real vectors z¼ ðz1;…; zNÞT and all integers N the condition
∑N

i ¼ 1∑
N
j ¼ 1ziCðsi; sjÞ zjZ0 holds. In the case of scalar, weakly

stationary RFs, Bochner's theorem [3] specifies the conditions for
non-negative definiteness. In the case of multivariate RFs,
nonnegative-definiteness requires stricter conditions as specified
by Cramér's theorem [8].

Mathematically, the easiest matrix covariance construction is
based on the separability hypothesis, i.e., Cp;qðrÞ≔CðrÞapq, where Cð�Þ
is a marginal covariance function and A¼ ½apq�, p; q¼ 1;…;D, a
nonnegative definite matrix of coefficients. The above construction
is straightforward but inflexible and not supported by physical
models. The popular linear model of co-regionalization (LMC)
[17,38] is in many situations inadequate, because every vector
component is represented as a linear combination of latent,
independent, univariate spatial processes. In addition, the smooth-
ness of the LMC model is dominated by the roughest of the latent
components [16].

Kernel convolution methods are useful if the convolution is
amenable to closed form expressions [14,27]. A class of multi-
variate Matérn models that extend the scalar Matérn RF is
presented in [16], with generalizations in [2]. Permissibility criteria
for certain matrix covariance functions are given in [33].

This paper focuses on the development of multivariate Spartan
spatial RF (MSSRF) models and explicit matrix covariance func-
tions obtained from the MSSRF covariances at the limit of infinite
spectral cutoff. The MSSRFs will by construction incorporate
correlations between a set of dimensionless scalar components
(RFs), i.e., X1ðs;ωÞ;…;XDðs;ωÞ. MSSRFs may be used to represent
either distinct physical vectors or composite state vectors.

Scalar Spartan Spatial Random Fields (SSRFs) were introduced
in [19]. The joint pdf of scalar SSRFs belongs to the exponential
family and has certain interesting properties: (i) The respective
precision (inverse covariance) matrix is based on local interactions
—expressed in terms of derivatives—between the field values.
This leads to sparse representations of the precision matrix. In
MSSRFs, local terms will couple the vector components. (ii) In
SSRFs, the permissibility condition requires that the rigidity
coefficient η1, (see (3) below) satisfies η14�2. The permissibility
conditions for MSSRFs are extended as described in Section 4. (iii)
The inference of SSRF parameters does not require the sample-
based estimation of the experimental variogram and its fit to a
theoretical model, since the exponential dependence of the joint
pdf and the sparsity of the precision matrix affords other options
[19,22]. This property is extended to MSSRFs, which also retain the
exponential density structure. (iv) SSRFs enable spatial interpola-
tion methods which take advantage of the sparse precision matrix
to reduce the computational cost of kriging [12,22]. Similar inter-
polation approaches for MSSRFs will be investigated in future work.

The paper is organized as follows: Section 2 reviews general
properties of matrix covariance functions. Section 3 is devoted to a
brief overview of scalar SSRFs. Section 4 extends the SSRF model to
MSSRFs and derives explicit expressions for matrix Spartan

covariance functions in d¼ 1;2;3. Section 5 presents simulations
of bivariate RFs with Spartan matrix covariance dependence in one
and two dimensions. Finally, our conclusions and a discussion of
the results are given in Section 6.

2. Preliminaries

Below we review useful mathematical properties of matrix
covariance functions [38]. First, the property of reflection symmetry
is expressed as

Cp;qðrÞ ¼ Cq;pð�rÞ; paq¼ 1;…;D: ð1Þ
Hence, if paq it is not required that Cp;qðrÞ ¼ Cq;pðrÞ, which is valid
only if Cp;qðrÞ is an even function of r.

Second, the main inequality between the diagonal and off-
diagonal covariance components is

Cp;pð0ÞCq;qð0ÞZ jCp;qðrÞj2:
Based on the Schwartz inequality it follows that Cp;pð0ÞZ jCp;pðrÞj.
For the off-diagonal covariance functions, however, this is not
necessarily true since Cp;qð0Þ may be negative for paq. In addition,
even the inequality jCp;qð0ÞjZ jCp;qðrÞj may not be true, since the
maximum absolute value of the cross covariance does not have
to occur at zero lag.

Third, for the matrix spectral densities, it can be shown based
on Cramer's theorem [8,38] (see also Section 4) that the following
inequality holds

j ~Cp;qðkÞj2r ~Cp;pðkÞ ~Cq;qðkÞ:

3. Spatial Spartan RFs for scalar-valued RFs (SSRF)

This section reviews basic facts about the construction proposed
in [19]. Let xðsÞ represent a state (realization) of the scalar, zero-mean,
statistically homogeneous and isotropic Xðs;ωÞ; sADDRd. The pdf
f X ½xðsÞ� is assumed to be jointly Gaussian. Isotropy implies that the
covariance function, CðJrJ Þ, depends only on the Euclidean norm JrJ
of r. The isotropy constraint can be relaxed using linear rotation and
rescaling transformations; in d¼2 this is done efficiently using the
approach in [5].

3.1. SSRF Definition

The SSRF joint pdf f X ½xðsÞ� is in general expressed as

f X½xðsÞ� ¼
1
Z
e�H½xðsÞ�; ð2Þ

where H½xðsÞ� represents the energy or cost functional and Z is a
constant that normalizes the pdf. Based on this pdf, “high-energy”
states are less likely than “lower-energy” states. The role of the
functional H½�� is to impose spatial correlations and does not
necessarily represent actual energy values.

The Fluctuation-Gradient-Curvature (FGC) model is an SSRF
family defined by means of the following energy functional, where
η0 is the scale parameter, η1 is the dimensionless rigidity coeffi-
cient, and ξ is the characteristic length [19]

H½xðsÞ� ¼ 1

2η0ξ
d

Z
ds½x2ðsÞþη1ξ

2f∇xðsÞg2þξ4f∇2xðsÞg2�: ð3Þ

3.2. The concept of spectral cutoff

In order for the above energy functional to be well-defined, the
fluctuations of xðsÞ should be cut off above a critical wavenumber
in the spectral domain. Otherwise, CðrÞ becomes non-differentiable
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