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a b s t r a c t

Stochastic analysis of structures using probability methods requires the statistical knowledge of
uncertain material parameters. This is often quite easier to identify these statistics indirectly from
structure response by solving an inverse stochastic problem. In this paper, a robust and efficient inverse
stochastic method based on the non-sampling generalized polynomial chaos method is presented for
identifying uncertain elastic parameters from experimental modal data. A data set on natural frequencies
is collected from experimental modal analysis for sample orthotropic plates. The Pearson model is used
to identify the distribution functions of the measured natural frequencies. This realization is then
employed to construct the random orthogonal basis for each vibration mode. The uncertain parameters
are represented by polynomial chaos expansions with unknown coefficients and the same random
orthogonal basis as the vibration modes. The coefficients are identified via a stochastic inverse problem.
The results show good agreement with experimental data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The behavior investigation of composite structural systems in
which parameters are variable or not perfectly known is still
a challenging problem. The most available models to investigate
the behavior of composite structures assume an effective homo-
genized set of material properties. These models fail to capture the
true behavior of the wide variety of such structures exhibit
significant inherent uncertainty in material parameters. In this
context, we face three critical issues. First, the modeling of such
structures requires a large number of parameters. Secondly, direct
experimental determination of these parameters by standard
methods demands various test setup which are destructive and
expensive. Finally, parameters of such structures exhibit uncer-
tainty due to the structural complexity of individual components,
interaction between the components, manufacturing process, etc.
While deterministic models lead to nominal results, stochastic
models, in contrast, capture these uncertainties and have become
an important tool for analysis and design of composite structures.
However, setting an appropriate stochastic model requires accu-
rate assigning of parameter uncertainties which are often difficult
to measure directly. These uncertainties will appear effectively in
structure responses from which an inverse stochastic problem can
be employed to identify uncertain parameters.

The unknown random parameters in a stochastic inverse
problem are estimated as probability measures. The major sto-
chastic methods use parametric probabilistic approach which
allows the uncertain parameters of the nominal model to be taken
into account through the introduction of prior probability models
[1]. Such an approach consists directly constructing the probability
distributions of the random quantities. In such cases, distributions
of system outputs are characterized by certain types of probability
density function (PDF), e.g. normal PDF. The main issue is to
knowing the prior knowledge on distribution, particularly, on the
PDF type of uncertain parameters. A usual solution is to use
parametric PDF and identification of the parameters by using
maximum likelihood estimation. A PDF which its parameters
minimize the likelihood function is the best to represent the data.
The application of the method is, however, limited due to the fact
that the results depend on the model used and it can be sensitive
to the choice of starting values [2]. Bayesian inference techniques
are the most used methods which provide a robust approach to
taking into account the system variability and parameter uncer-
tainties. The method includes all known information about para-
meter and system uncertainties into a prior distribution model
which can be combined with the likelihood to formulate the
posterior PDF. It has been successfully used in many problems
[3–6]. However, extreme dependence of higher order statistics to
the form of prior distribution, using deterministic input sensor
measurements, and providing no information for PDF of measured
quantities cause that this framework has not been applied to
design problems of multiple source of uncertainties. To overcome
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these issues, in recent years, a method based on the spectral
stochastic formulation was proposed. The generalized Polynomial
Chaos (gPC) expansion plays the main rule in this method. The
propagation of parameter uncertainties is approximated by the
gPC expansion with unknown coefficients. Orthogonal polynomial
basis functions are constructed according to the identified PDF for
the uncertain measured data and parameters. The application of the
method in various areas has been demonstrated in the past [7–14].

In this paper we focus on the identification of non-Gaussian
uncertain parameters from real experimental modal data. The
parameters are approximated by the gPC expansions where the
unknown coefficients are estimated via a stochastic inverse
problem. Specifically, the experimental eigenfrequencies of nom-
inally identical laminated composite plates are used to estimate
the coefficients of gPC expansion of uncertain material properties,
i.e. elasticity moduli and the shear modulus. To provide the prior
information on the PDF type of experimental data, the Pearson
system is used [15]. Since the PDF identification by the Pearson
system originally depends on the third and fourth statistical
moments of observations, the identified PDF type is unique.
Knowing the type of PDF provides prior information on the
random variables and orthogonal polynomials which are used to
construct the gPC expansions of data. The gPC expansions of the
uncertain parameters are constructed assuming the same random
variables with unknown coefficients. In this way, identification of
the probability measure of the uncertain parameter is shifted to
estimation of the unknown deterministic coefficients.

This paper is organized as follows: in the next section we
present an introduction on gPC method for discretization of
uncertain parameters. The stochastic direct and inverse modal
analysis is discussed in Sections 3 and 4 respectively followed by
PDF identification from experimental data in Section 5. Section 6
presents the numerical results of the procedure. The conclusions
are discussed in the last section of the paper.

2. Discretization of uncertain parameters

Numerical stochastic solution of structural problems requires
discretization of random quantities, e.g. uncertain parameters and
structural responses. This is particularly essential for performing
stochastic FEM. As a basic principle, the stochastic space has to be
discretized for the treatment of randomness in the physical system
to be adapted to the implementation of the deterministic FEM
model. Several discretization methods have been adopted to
integrate stochastic quantities to FEM simulation, cf. [16] for
details. In sampling based methods, a random quantity is given
for each realization of the structure model. In non-sampling
methods, the uncertain model parameters and structural
responses are represented by spectral decomposition with
unknown coefficients and orthogonal polynomial basis. A least-
squares fit can be used to determine the coefficients of the
expansion. They use commonly the generalize polynomial chaos
(gPC) expansion [17]. The basic idea is to project the random
variables of problem onto a stochastic space spanned by a set of
complete orthogonal polynomials. Let ðΩ;A; PÞ be a probability
space, in whichΩ is a sample space, A is a σ-algebra onΩ, and P is
a probability measure on Ω. The gPC expansion of any uncertain
parameter P : Ω⟶R with finite variance, i.e. PAL2ðΩÞ, can be
represented as [18–20]

P ¼ ∑
1

i ¼ 0
piΨ iðξÞ ¼ pTΨ ð1Þ

The vector Ψ is a set of orthogonal polynomials of multidimen-
sional standard random vector ξ¼ fξ1; ξ2;…; ξngT defined on
particular sample random spaces, i.e. ξiAΩi; i¼ 1;2;…;n. A set

of ðξi;Ψ iÞ can be selected depending on the type of the uncertain
parameter, cf. [19,21,22] for details. The random orthogonal poly-
nomials possess orthogonality property with respect to the inner
product on L2ðΩÞ, i.e.

E½Ψ i;Ψ j� ¼ E½Ψ 2
i �δij; ð2Þ

in which δij represents the Kronecker delta and E denotes the
expectation value with respect to the probability space. This
property can be used to calculate the truncated gPC coefficients
by projecting onto the orthogonal basis:

pi ¼
1

〈Ψ 2
i 〉

Z
Ω
〈P;Ψ kðξÞ〉ρðξÞ dðξÞ ð3Þ

where ρðξÞ is the joint PDF corresponding to the random space Ω.
In this way, the estimation of uncertain random parameter P is
shifted to the calculation of deterministic coefficients pi. These
coefficients completely characterize the identification of uncertain
parameter P. Clearly, the accuracy of this characterization is hardly
depended on the number of these coefficients and selection of
orthogonal basis [19,22].

3. Stochastic FEM of composite modal analysis

Assuming general linear elastic behavior, the relation between
stress and strain vectors, σ and ε respectively, is given by the
generalized Hooke's law, i.e.

fσg ¼ ½C�fεg ð4Þ
where ½C�AR6�6 is the elastic matrix which is usually character-
ized with a set of engineering constants like generalized Young's
moduli, shear moduli and Poisson's ratios. For an orthotropic
material, there are twelve engineering constants. For this material
model, the in-plane stress–strain relation equation (4) is reduced
to

σ1

σ2

τ12

8><
>:

9>=
>;¼

C11 C12 0
C21 C22 0
0 0 C66

2
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3
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ε1
ε2
γ12

8><
>:

9>=
>; ð5Þ

The reduced stiffness coefficients Cij are related to the compliances
as follows:

C11 ¼
E11

1�ν12ν21
; C22 ¼

E22
1�ν12ν21

; C12 ¼
ν12E22

1�ν12ν21
; C66 ¼ G12:

ð6Þ
The Kirchhoff assumptions imply that the elastic behavior of an
orthotropic material can be fully described by four instead of nine
independent engineering constants, i.e. E11, E22, G12 and ν12.
Accordingly, the element stiffness matrix Ke in a FEM formulation
can be derived as

Ke ¼
Z
Vk

BT
eCekBe dVk ð7Þ

In which Vk is the volume element and B is the displacement–
strain matrix. The relationship between the modal data and the
elastic parameters of structure can be defined by this matrix. The
element mass matrix Me is stated as

Me ¼
Z
Vk

γekH
T
aH dVk ð8Þ

where γ is the mass density and H is the interpolation matrix.
Assembling the element matrices to building the global stiffness
and mass matrices, K and M respectively, yields the FEM model of
undamped modal analysis of the structure as

½�λiMþK �ui ¼ 0; i¼ 1;2;…;n: ð9Þ
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