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a b s t r a c t

The problem of exponential mean-square stability of two-time scale, linear stochastic hybrid systems has
been studied in this paper. To obtain the sufficient conditions of stability, two basic approaches of
stability analysis: for one-time hybrid systems with a Markovian switching rule as well as switching rule
and singularly perturbed nonhybrid systems, were combined. The Lyapunov techniques were used in
both approaches.

& 2013 Elsevier Ltd. All rights reserved.

The determination of mathematical model of a real dynamic
system is the fundamental problem of engineering research. In
many cases the classical models are not appropriate and research-
ers are looking for more complex models. Among them recently
two groups of models are considered, namely multi-scale and
hybrid models.

In the case of multi-scale models one of the most important
groups is the so-called multi-time scale models. They are used in
the case when in some real dynamic systems one can observe an
interaction of a few processes acting with different speeds, for
instance, if slow and fast vibrations appear in dynamic system.
The dynamic of these systems is described by the so-called
singularly perturbed or two time scale models. A wide study of
such systems is given for instance in [6].

Another group of complex models is variable structure or
hybrid models described by deterministic or stochastic differential
[2,4,5]. In the successive moments of time their structures can
change according to the given switching rule thereupon creates
the hybrid system. Since systems in the real world often need to
run for a long period of time, the stability and control of hybrid
systems have recently received a lot of attention (see for example [5]).
Hybrid systems are applicable in many fields including areas of
nuclear, thermal, chemical processes, biology, socioeconomics,
immunology and many others. Also the theory of hybrid systems
is used in control of mechanical systems, for instance nonsmooth

or nonholonomic systems and many other fields. The problem of
stability of stochastic hybrid systems was very intensive studied in
the literature, see for instance [5,8]. This problem is very impor-
tant, because it is a well known fact that even if all structures are
stable the whole hybrid system with a special switching signal can
be unstable [5].

Some authors tried to combine both approaches. They have studied
control and stabilization problems of linear singularly perturbed
deterministic hybrid systems with a Markovian switching rule
[10,1,11]. The objective of this paper is to extend this approach to
the study of the stability of linear singularly perturbed stochastic
hybrid systems with parametric excitation and Markovian switching
rule or other switching rules, using stability analysis of singularly
perturbed deterministic nonhybrid systems [3] and its extended
version for stochastic nonhybrid systems [9].

1. Mathematical preliminaries

Throughout this paper we use the following notation. Let j � j
and 〈 � 〉 be the Euclidean norm and the inner product in Rn,
respectively. By λðAÞ we denote the eigenvalue of the matrix A,
λminðAÞ and λmaxðAÞ denote the smallest and the biggest real part of
the eigenvalue of the matrix A, respectively. We will denote the
indicator function of a set G by IG. We mark Rþ ¼ ½0;1Þ,
T¼ ½t0;1Þ, t0Z0. Let ðΩ;F ; fF tgtZ0;PÞ be a complete probability
space with a filtration fF tgtZ0 satisfying usual conditions. Let
ξðtÞ ¼ ½ξ1ðtÞ;…; ξmðtÞ�T ; tZ0, be the m-dimensional Wiener process
defined on the probability space. The process rðtÞ; tZ0, be a right-
continuous switching signal (cadlag) (Markov chain) on the prob-
ability space taking values in a finite state space S¼ f1;2;…;Ng
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with a generator Γ ¼ ½γij�N�N , i.e.

PfrðtþδÞ ¼ jjrðtÞ ¼ ig ¼
γijδþoðδÞ if ia j;

1þγiiδþoðδÞ if i¼ j;

(
ð1Þ

where δ40, γijZ0 is the transition rate from i to j if ia j,
γii ¼ �∑ia jγij. We assume that the Markov chain is irreducible,
i.e. rankðΓÞ ¼N�1, and has a unique stationary distribution
P ¼ ½p1; p2;…; pN�T ARN which can be determined by solving

PΓ ¼ 0

subject to ∑
N

i ¼ 1
pi ¼ 1 and pi40 for all iAS:

8><
>: ð2Þ

We consider the nonlinear hybrid system with multiplicative
excitations described by the vector Itô differential equation

dXðtÞ ¼ΦðX; t; sðtÞÞ dtþ ∑
m

k ¼ 1
GkðX; t; sðtÞÞ dξkðtÞ; Xð0Þ ¼X0; ð3Þ

tZ0, sð0Þ ¼ s0AS, XARn, Φ;Gk : R
n � Rþ � S-Rn, k¼1,…,m,

X¼ ½X1;…;Xn�T , Φ¼ ½Φ1;…;Φn�T , Gk ¼ ½G1
k ;…;Gn

k �T , the process
sðtÞ : Rþ-S is a switching signal. We assume that the solution
XðtÞ of Eq. (3) exists and is everywhere continuous with
probability one.

Additionally, we assume that processes wk, the process sðtÞ and
the initial condition are mutually independent and processes wk(t)
and sðtÞ are fF tgtZ0 adapted.

A few cases of switching signals are usually considered in the
literature. In this paper we will study two of them, namely

(i) any piecewise constant deterministic function,
(ii) Markov switching rule sðtÞ ¼ rðtÞ.

We quote some results that will be useful in further con-
siderations [7], [8].

For any function VðX; t; lÞ twice differentiable in X and once
differentiable in t the l-th process defined by Eq. (3) has a
generator Ll given by

Lð3Þ
l VðX; t; lÞ ¼ ∂VðX; t; lÞ

∂t
þ ∑

n

i ¼ 1
ΦiðX; t; lÞ ∂V ðX; t; lÞ

∂Xi

þ 1
2

∑
n

r;s ¼ 1
∑
m

k ¼ 1
Gr
kðX; t; lÞGs

kðX; t; lÞ
∂2VðX; t; lÞ
∂Xr∂Xs

þ ∑
N

j ¼ 1
γijVðX; t; lÞ; lAS: ð4Þ

When the switching rule sðtÞ is not equal to Markov switching
signal r(t) then in equality (4) it is assumed that γij ¼ 0.

Definition 1. The null solution XðtÞ � 0 of the stochastic differ-
ential equation (3) is said to be p-th mean exponentially stable
ðp40Þ if there exists a pair of positive scalars α; c such that
8ðX0; t0ÞARn � Rþ

E½jXðX0; t0Þjp�rcE½jX0jp�expf�αðt�t0Þg; tAT ð5Þ

Theorem 1 (Mao [8]). Assume that there exists a function VðX; t; lÞ
twice differentiable in X and once differentiable in t for all lAS and
positive numbers p; λ; c1 and c2 such that

c1jXjprVðX; t; lÞrc2jXjp; lAS ð6Þ

Lð3Þ
l VðX; t; lÞr�λjXjp; lAS ð7Þ

then the null solution XðtÞ of Eq. (3) for sðtÞ ¼ rðtÞ is p-th mean
exponentially stable.

Corollary 1. If assumption (7) is replaced by

Lð3Þ
l VðX; t; lÞr�2αVðX; t; lÞ; lAS ð8Þ

for a positive parameter α, then the null solution XðtÞ of Eq. (3) is also
p-th mean exponentially stable.

Lemma 1 (Corless and Glielmo [3]). Consider any symmetric matrix
SðɛÞ ¼ ½sijðɛÞ�; i; j¼ 1;2, in which the function sij : ð0; þ1Þ-R satisfy

lim
ɛ-0

s11ðɛÞ ¼ λ0; lim
ɛ-0

s22ðɛÞ ¼ þ1; lim
ɛ-0

s212ðɛÞ
s22ðɛÞ

¼ 0; ð9Þ

then

lim
ɛ-0

αminðSðɛÞÞ ¼ λ0; ð10Þ

where αminðSÞ is the minimal eigenvalue of matrix S, λ0 is a constant.

2. Problem formulation

We consider a singularly perturbed stochastic linear hybrid
system with the Markov switching rule sðtÞ ¼ rðtÞ described by the
vector Ito differential equations

dxðtÞ ¼ ½A1ðrðtÞÞxþB1ðrðtÞÞz� dt

þ ∑
M

k ¼ 1
G1
k ðrðtÞÞxþ ∑

M

k ¼ 1
C1
k ðrðtÞÞz

" #
dξ1k ðtÞ; xðt0Þ ¼ x0; ð11Þ

ɛ dzðtÞ ¼ ½A2ðrðtÞÞxþB2ðrðtÞÞz� dt

þ ffiffiffi
ɛ

p
∑
M

k ¼ 1
G2
k ðrðtÞÞxþ ∑

M

k ¼ 1
C2
k ðrðtÞÞz

" #
dξ2k ðtÞ; zðt0Þ ¼ z0;

ð12Þ
where tARþ is the time, xARn, zARm are the state vectors and
ɛ40 is the singular perturbation parameter. For some ɛn40 the
matrices A1;G

1
k are n�n, B1;C

1
k are n�m, A2;G

2
k are m�n and

B2;C
2
k are m�m dimensional; ξ1k ðtÞ and ξ2k ðtÞ, k¼ 1;…;M, are

independent standard Wiener processes. For convenience we assume
that the initial conditions x0ARn and z0ARm are deterministic.

For each xARn and lAS we assume that the equation
A2ðrðtÞÞxþB2ðrðtÞz¼ 0 has a unique solution

z¼ hðxÞ ¼ �B�1
2 ðrðtÞÞA2ðrðtÞx: ð13Þ

This assumption defines the complete reduced-order system by
setting ɛ¼ 0 and z¼ hðxÞ in (11) as follows:

dxðtÞ ¼ ½A1ðrðtÞÞ�B1ðrðtÞÞB�1
2 ðrðtÞÞA2ðrðtÞÞ�x dt

þ ∑
M

k ¼ 1
G1
k ðrðtÞÞ�C1

k ðrðtÞÞB�1
2 ðrðtÞÞA2ðrðtÞÞx

" #
dξ1k ðtÞ: ð14Þ

For system (11) and (12) we define a new variable τ¼ ðt�t0Þ=ɛ
and new τ-dependent variables xf ðτÞ ¼ xðt0þɛτÞ ¼ xðtÞ, zf ðτÞ ¼
zðt0þɛτÞ ¼ zðtÞ, rf ðτÞ ¼ rðt0þɛτÞ ¼ rðtÞ, w1

k ðτÞ ¼
ffiffiffi
ɛ

p
ξ1k ðt0þɛτÞ, w2

k ðτÞ
¼ ffiffiffi

ɛ
p

ξ2k ðt0þɛτÞ. The stochastic differential equations for these
new variables have the form

dxf ðτÞ ¼ ɛ½A1ðrf ðτÞÞxf þB1ðrf ðτÞÞzf � dτ

þ ffiffiffi
ɛ

p
∑
M

k ¼ 1
G1
k ðrf ðτÞÞxf þ ∑

M

k ¼ 1
C1
k ðrf ðτÞÞzf

" #
dw1

k ðτÞ; ð15Þ

dzf ðτÞ ¼ ½A2ðrf ðτÞÞxf þB2ðrf ðτÞÞzf � dτ

þ ∑
M

k ¼ 1
G2
k ðrf ðτÞÞxf þ ∑

M

k ¼ 1
C2
k ðrf ðτÞÞzf

" #
dw2

k ðτÞ: ð16Þ

For ɛ¼ 0 Eq. (15) becomes dxf ðτÞ ¼ 0, which implies that xf ðτÞ ¼
xf ð0Þ ¼ xðt0Þ ¼ x0. Thus the boundary-layer system is described by

dzf ðtÞ ¼ ½A2ðrf ðτÞÞx0þB2ðrf ðτÞÞzf � dt

þ ∑
M

k ¼ 1
G2
k ðrf ðτÞÞx0þ ∑

M

k ¼ 1
C2
k ðrf ðτÞÞzf

" #
dw2

k ðtÞ: ð17Þ

We note that x0 is treated in Eq. (17) as a vector of parameters.
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