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a b s t r a c t

We describe three-dimensional and planar models of hyperelastic fiber reinforced materials character-
ized by statistical distribution of the fiber orientation. Our models are based on a second order
approximation of the strain energy density in terms of the fourth pseudo-invariant I4, typically
employed in the description of fiber reinforced materials. For a particular choice of the strain energy
density associated to the fiber reinforcement, it is possible to derive the explicit expression of the
material and spatial stress tensors and of the stress covariance tensors. The mechanical behavior of the
models is assessed through uniaxial, biaxial and shear tests.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The theoretical and numerical modeling of the mechanical
behavior of soft biological tissues in physiological or pathological
conditions has received particular attention in the last few
decades. One of the reasons of the interest is the necessity to
use numerical models in medicine and biology to predict the
behavior of organs or biological ensembles. Another reason is the
design and the improvement of diagnostic tools and instruments
that interact with biological tissues. Another motivation is the
invention and the development of new materials mimicking
peculiar features observed in natural tissues. The definition of a
numerical model involving bio-tissues requires, in addition to the
accurate measurements of the geometry, the use of sophisticated
material models that must be calibrated against ad hoc experi-
mental data. Note that the parameters of a material model are
individual-dependent and often cannot be transferred easily from
one case to another. Therefore, in view of actual applications, it
seems to be wise to pursue the definition of material models with
a reduced number of material parameters but otherwise able to
cover a large range of deformations. In this way the calibration of
the parameters may be somehow facilitated. The search of
accurate material models characterized by a few material para-
meters is one of the key aspects of the modern computational

biomechanics, and the present study tries to give a contribution by
including the natural randomness of soft biological tissues.

In many situations of practical interest the non-pathological
behavior of biological tissues is described sufficiently well by
hyperelastic models that have been conceived for rubber materi-
als, e.g., neo-Hookean, Mooney–Rivlin, Yeoh and others. On the
other hand, most biological tissues are characterized by aniso-
tropy, necessarily because the organ must provide a general multi-
direction confinement and, at the same time, it must resist to
localized and strongly oriented actions. Mechanical anisotropy is
achieved by means of complex and specialized architectures of
cable-like fibrils and fibers, made of the most diffused protein in
nature, i.e., the collagen. It follows that material models commonly
employed for biological tissues account for different kinds of
anisotropy induced by the collagen cables [10,18,5,13,8]. Moreover,
biological tissues are characterized ineluctably by a spatial dis-
tribution of the collagen reinforcement whereas unique strong
alignments of fibers are in contrast with the function of the organ.
Examples of distributed reinforcing fibers are found in the micro-
structure of the cornea [4,15,16,2] and of the artery walls, and in
other biological tissues [7,17]. In the recent literature numerous
material models considering a distributed orientation of the
collagen fibers have been presented and discussed, starting from
the seminal work by Lanir [14], and including several important
contributions [7,6,1]. In this regard, our recent work on this field
[19] proposed a novel point of view by introducing the concept of
second order (or variance) approximation of the strain energy
density of a fiber distributed material in terms of the fourth
pseudo-invariant I4. The model was developed to overcome the
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two main difficulties of non-deterministic mechanical properties:
(i) the impossibility to obtain the analytical definition of stress and
elasticity tensors and (ii) the heavy computational effort necessary
to compute stress and elasticity tensors in numerical applications.

Statistically based material models are appealing in stochastic
approaches when they are proved to perform well also in terms of
covariance stress tensors. The discussion on the covariance stress
tensor of the second order approximation model is one of the new
contributions of the present paper on the line of [23].

In several tissues geometrically organized as structures, e.g.,
skin, corneas, irides, artery walls, and other shell-like or mem-
brane like organs, the distribution of the collagen fibers assumes a
prevailing two-dimensional configuration [2,20]. The attractive
possibility of using membrane and shell theories to reduce the
computational effort in view of evaluating the mechanical beha-
vior of organs calls for the development of constitutive models
characterized by planarity of the fiber micro-structural organiza-
tion, see, e.g., [21,24]. As an additional new contribution of this
work, we present here the two-dimensional version of the second
order approximation material model above recalled [19].

The organization of the paper is as follows. In Section 2 we
introduce briefly the hyperelastic framework and the necessary
definitions. In Section 3 we recall the basic ideas of the three-
dimensional material model presented in [19]. Under the assump-
tion of an axis-symmetric distribution of the fiber orientation, we
derive a particularly compact analytical expression of the second
Piola–Kirchhoff stress and of the covariance stress tensor. In
Section 4 we particularize the three-dimensional model to a
specific plane, containing the distribution of fibers. In Section 5
we compare, through uniaxial, biaxial and shear test, the behavior
of the two-dimensional and three-dimensional distributions, in
terms of stress and covariance stress components. The behavior of
the model as a function of concentration parameter of a von Mises
distribution is also discussed.

2. Hyperelasticity framework

In the framework of nonlinear continuum mechanics, we
postulate the existence of a Helmholtz free-energy density per
unit reference volume Ψ . We comply with the purely elastic case,
where the free energy is assumed to be dependent on the
deformation gradient F only, i.e., Ψ ¼Ψ ðFÞ. For a biological tissue
with collagen fibers it is customary to decompose additively the

strain energy into three terms:

Ψ ¼Ψ volþΨ isoþΨ aniso: ð1Þ
The first term, Ψ vol, accounts for volume changes, and it is
assumed to be dependent on the volumetric part of the deforma-
tion, i.e., on the Jacobian J ¼ det F, i.e.,

Ψ vol ¼Ψ volðJÞ:
The second term, Ψ iso, accounts for the isotropic behavior of the
material due to the underlying matrix and eventually to a portion
of isotropically distributed fibrous reinforcement. Usually, Ψ iso is
assumed to be dependent on the first and second invariants, I1 and
I2, of the modified Cauchy–Green deformation tensor C ¼ F

T
F,

where F ¼ J�1=3F:

Ψ iso ¼Ψ isoðI1; I2Þ:
The anisotropic effect of the fibrous reinforcement is described by the
third term Ψ aniso. According to a standard approach initiated by
Spencer [22], here Ψ aniso is assumed to be dependent on the modified
tensor C and on particular vectors – or tensors – describing the
intrinsic microstructure of the material. As a consequence of the
additive decomposition (1) and of the decoupling of the arguments
between the addends, it follows that the second Piola–Kirchhoff stress
tensor S splits into the sum of three terms:

S¼ SvolþSisoþSaniso;

in the form:

S¼ 2
∂Ψ
∂C

¼ 2
∂Ψ vol

∂C
þðS isoþSanisoÞ

∂C
∂C

;

where

S iso ¼ 2
∂Ψ iso

∂C
; Saniso ¼ 2

∂Ψ aniso

∂C
: ð2Þ

Explicit expressions for the anisotropic second Piola–Kirchhoff stress
can be found in standard continuum mechanics textbooks [9].

According to [10], in the case of a single family of parallel fibers
oriented in the referential direction a0, a well accepted form of the
anisotropic Helmholtz free energy density is given by

Ψ anisoðI4Þ ¼Ψ anisoðI4ÞþΨ 0
aniso ¼

k1
2k2

exp½k2ðI4�1Þ2�� k1
2k2

;

where the pseudo-invariant I4 is the contraction of C and of the
second order structure tensor A0 ¼ a0 � a0, i.e.,

I4ða0Þ ¼ C : A0:

Fig. 1. Orientation of the generic unit vector a aligned with a portion of fibers. (a) Spherical coordinates for a fully three-dimensional distribution. (b) Cylindrical coordinates
for a planar distribution.
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