ELSEVIER

Contents lists available at SciVerse ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Tungsten doping magnetic iron oxide and their enhanced lithium Ćion storage properties

Jinxue Guo, Lei Chen, Xiao Zhang*, Xiaoyu Zhou, Guangjin Wang, Bin Jiang

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

ARTICLE INFO

Article history: Received 15 March 2013 Accepted 13 May 2013 Available online 22 May 2013

Keywords: Energy storage and conversion Magnetic materials W-doped Fe₃O₄ XPS

ABSTRACT

This work presents a hydrothermal synthesis of W-doped Fe_3O_4 nanoparticles. The results indicate that Fe^{2+} but not Fe^{3+} is substituted with W^{6+} . Both undoped and doped Fe_3O_4 show ferromagnetic behaviors. The magnetism of Fe_3O_4 decreases from 7.2 emu g^{-1} to 5.0 emu g^{-1} after doping, because the superexchange interactions between Fe^{2+} and Fe^{3+} are hindered by W. Interestingly, W-doped Fe_3O_4 exhibits improved reversible capacity of 629 mAh g^{-1} in comparison with 341.3 mAh g^{-1} of pure Fe_3O_4 for their first charge/discharge cycle, and shows higher initial Coulombic efficiency of 86.1%. Moreover, better cyclic stability has been obtained for W-doped Fe_3O_4 . The W-doped Fe_3O_4 would be a candidate in applications of lithium ion batteries, magnetic materials, and other areas.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

 ${\rm Fe_3O_4}$ has been extensively studied for its unique properties and various applications of magnetic separation [1], magnetic response imaging [2], targeted drug delivery [3], and water treatment [4]. It has also been considered as a promising anode for lithium ion batteries (LIBs) due to its high theoretical capacity (~920 mAh g $^{-1}$), natural abundance, low cost, and environmental benignity [5].

Recently, it has been demonstrated that the substitution of Fe with another metal element will reform the crystal structure of Fe_3O_4 and tune their magnetic and electrical properties, extending their application range. Various divalent metallic elements such as Mn [6], Zn [7], Co [8] and Ni [9] have been employed for the substitution. For example, Hwang et al. have synthesized Mndoped Fe_3O_4 nanowire arrays and revealed that Mn substitution reduced magnetization of Fe_3O_4 [6]. Though the magnetic properties hindered by the metal doping have been studied widely, the effect of metal doping on the lithium ion storage property of Fe_3O_4 nanostructures, to our knowledge, has not been revealed. Thus, a study of the effect of metal doping on the properties of Fe_3O_4 , especially on the lithium ion storage property, is desirable for both fundamental scientific interest and its potential application.

Tungsten oxide was chosen for the substitution of Fe_3O_4 , because it is known as a good anode material for LIBs [10]. A simple hydrothermal method was developed to synthesize W-doped Fe_3O_4 nanoparticles at a large scale. The detailed

investigations of W-doped Fe_3O_4 and pure Fe_3O_4 nanoparticles have been performed. In this study, we are devoted to demonstrating how the doping of W influences the magnetic and electrochemical properties of Fe_3O_4 nanoparticles.

2. Experimental

Synthesis of W-doped Fe_3O_4 : Na_2WO_4 solution (0.01 M) was added into a mixing solution of $FeSO_4$ (0.01 M) and SDBS (0.02 M). The pH value was tuned to 10 with NaOH. Resultant solution was transferred into autoclaves, and heated at $180\,^{\circ}\text{C}$ for 12 h. The precipitates were obtained with centrifuge. Pure Fe_3O_4 nanoparticles were synthesized following the same route without the addition of Na_2WO_4 for comparison.

Characterization: The samples were characterized with powder X-ray diffraction (XRD) by a Philips X'-pert X-ray diffractometer, transmission electron micrographs (TEM) on a FEI TECNAI F30, and the energy dispersive spectroscopy (EDS) probe equipped on a JEOL JSM-6700 F scanning electron microscope (SEM). The magnetic properties were measured with a high sensitivity vibrating sample magnetometer (Model 7404, Lakeshore) at room temperature. X-ray photoelectron spectroscopy (XPS) was carried out on a RBD upgraded PHI-5000c ESCA system (Perkin Elmer) with Mg K α radiation ($h\nu$ = 1253.6 eV).

Electrochemical measurements: The electrochemical tests were carried out with a CR2016-type coin cell. Metallic lithium was used as negative electrodes. The working electrode was fabricated by compressing a mixture of active materials, acetylene black and polyvinylidene fluoride in a weight ratio of 75:15:10 onto a copper foil, and dried at 120 °C for 24 h under vacuum. The Clegard 2300

^{*} Corresponding author. Tel.: +86 532 84022681; fax: +86 532 84023927. *E-mail address*: zhx1213@126.com (X, Zhang).

microporous film was used as separator. The electrolyte solution was 1 M LiPF $_6$ dissolved in a mixture of eth $_{yl}$ ene carbonate/dimethyl carbonate/ethyl methyl carbonate (1:1:1). The cell assembly was operated in a glove box filled with pure argon. Charge–discharge experiments were performed between 0.01 and 3 V on a LAND CT2001A Battery Cycler.

3. Results and discussion

Fig. 1a shows that all diffraction peaks of pure Fe_3O_4 can be indexed to a pure, well-crystalline, face-centered cubic spinel structure (JCPDS card no. 65-3107). The XRD pattern of W-doped Fe_3O_4 is approximately similar to those of pure Fe_3O_4 . But all peaks of W-doped Fe_3O_4 shift slightly toward lower angles, suggesting an increase of lattice constants. It is due to the substitutions of Fe ions with bigger W ions in the host lattice, which agrees well with the previous reports [6]. The enlargement of the diffraction intensity of the strongest peak of (311) plane is presented in Fig. 1b to display this shift more clearly. It is shown that the position of (311) peak of W-doped Fe_3O_4 shifts by 0.12° (2θ), providing a strong evidence of successfully W doping in Fe_3O_4 host matrix. The atomic ration of Fe to W element was determined to be 3:1 according to the EDS analysis.

XPS measurements were performed to further investigate their crystal phase. In Fig. 1c, there are two characteristic peaks located at 710.6 and 724 eV observed for pure Fe_3O_4 , which should be assigned to $Fe_2p_{3/2}$ and $Fe_2p_{1/2}$, respectively [11]. In comparison, the $Fe_2p_{3/2}$ and $Fe_2p_{1/2}$ peaks of W-doped Fe_3O_4 shift to higher energy region by 2.4 and 2.2 eV respectively, further confirming the successful doping of W. It is believed that Fe_2p_2 peaks located at higher binding energy display higher oxidation state. The higher binding energies of Fe_2p_2 peaks for W-doped Fe_3O_4 indicate that

Fe in W-doped Fe₃O₄ possesses higher oxidation state. So it can be concluded that there is less amount of Fe²⁺ and higher Fe³⁺/Fe²⁺ ratio in W-doped Fe₃O₄, attributing to the substitution of Fe²⁺ with W cations. Fig. 1d shows the XPS spectra of W 4f in W-doped Fe₃O₄. The W 4f peak is separated into two peaks by the same peak fitting deconvolution technique. The peaks at 35.8 and 37.6 eV can be assigned to W 4 f_{7/2} and W 4 f_{5/2} respectively and ΔE is 1.8 eV. According to standard binding energies and reported values [12], the exacting form of W ions in the W-doped Fe₃O₄ is W⁶⁺.

Fig. 2a and c shows that both the products are particles with similar diameters ranging from 20–200 nm, indicating that the W doping has no significant influence on their morphology and size. As is shown in the high-resolution TEM images (Fig. 2 b and d), all the products are well crystallized and exhibit clear crystal lattices. Pure Fe₃O₄ (Fig. 2 b) shows interplanar spacing of 0.486 nm, which is consistent with the spacing (0.484 nm) of (111) planes for face-centered cubic spinel Fe₃O₄. W-doped Fe₃O₄ shows higher interplanar spacing of 0.497 nm (Fig. 2 d), attributing to substitution of Fe with bigger W.

The hysteresis loops (Fig. 3) show that the specific saturation magnetization (M_s) of W-doped Fe₃O₄ is about 5.0 emu g⁻¹, which is lower than that of pure Fe₃O₄ (7.2 emu g⁻¹). As we all know, the magnetism of Fe₃O₄ arises from the superexhcange interactions among the Fe³⁺ and Fe²⁺. The substitution of Fe²⁺ with W⁶⁺ will hinder the superexchange and results in the decrease of M_s . The enlarged hysteresis loops are shown in the inset of Fig. 3, which shows that the coercive forces (H_c) are 200 Oe for W-doped Fe₃O₄ and 150 Oe for pure Fe₃O₄. The remanent magnetizations (M_t) are 0.64 emu g⁻¹ for W-doped Fe₃O₄ and 1.09 emu g⁻¹ for pure Fe₃O₄, revealing their weak ferromagnetic behaviors.

Fig. 4a presents the potential profiles in the 1st cycle of pure Fe₃O₄ and W-doped Fe₃O₄. The obvious extended potential plateau from ~0.8 V to 0.01 V is observed for both two electrode materials.

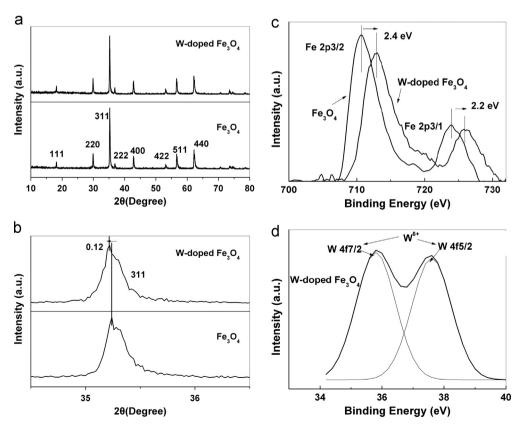


Fig. 1. (a) XRD patterns of pure Fe₃O₄ and W-doped Fe₃O₄ nanoparticles. (b) Magnified XRD (311) peaks. (c) XPS spectra of Fe 2p of the products. (d) W 4f peak of W-doped Fe₃O₄ nanoparticles.

Download English Version:

https://daneshyari.com/en/article/8022329

Download Persian Version:

https://daneshyari.com/article/8022329

<u>Daneshyari.com</u>