FI SEVIER

Contents lists available at SciVerse ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Synthesis and visible light photocatalytic activity of transition metal oxide (V₂O₅) loading on TiO₂ via a chemical vapor condensation method

Sungmin Chin, Eunseuk Park, Minsu Kim, Gwi-Nam Bae, Jongsoo Jurng *

Environment Division, Korea Institute of Science and Technology (KIST), 39-1, Hawolgok, Seongbuk, Seoul 136-791, Republic of Korea

ARTICLE INFO

Article history: Received 21 November 2011 Accepted 1 February 2012 Available online 9 February 2012

Keywords: Chemical vapor condensation Transition metal oxides Vanadium Methylene blue Photocatalyst

ABSTRACT

 ${
m TiO_2}$ nanoparticles that were synthesized using a chemical vapor condensation (CVC) method were loaded on transition metal oxides (${
m V_2O_5}$) using the impregnation method followed by thermal treatment. The primary particle size of the CVC-made ${
m TiO_2}$ sample after vanadium was decreased drastically to 5.7 nm. The particle sizes before and after vanadium loading on the commercial ${
m TiO_2}$ (Degussa, P25) were similar. The vanadium-loaded CVC-made ${
m TiO_2}$ sample exhibited the best absorption performance of visible light from the absorption spectra. Moreover, the CVC method through transition metal impregnation was favorable for its enhanced photocatalytic properties.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

TiO₂ is one of the most attractive photocatalysts for environmental problems. Nevertheless, its practical application as a photocatalyst has been limited because of its wide band gap (3.2 eV), which requires ultraviolet (UV) light with a wavelength <385 nm, and it is difficult to apply a TiO₂ photocatalyst to control environmental pollutants. Therefore, many studies have reported enhanced photocatalytic activities according to the synthesis methods [1–6]. Among the synthesis methods, chemical vapor condensation (CVC) is an alternative method for the direct synthesis of TiO₂ nanoparticles. In particular, the CVC method allows for individual adjustment of synthesis conditions such as synthesis temperature, precursor vapor residence time in the heating zone, and precursor vapor concentration. Therefore, the resulting TiO₂ nanoparticles have small particle sizes and improved crystallinity, resulting in good photocatalytic activity [1,3].

The other approach to augmenting the TiO_2 photocatalytic performance involves doping and/or loading with materials such as N, C, Fe, Pt, Pb, Sn, V, and Mo [7–18]. The photocatalytic activity of the TiO_2 system depends on its intrinsic properties, such as crystal phase, crystallinity, and specific surface area. Furthermore, the catalytic activity of TiO_2 depends strongly on electron–hole separation. The key to the photocatalytic process is to inhibit the electron–hole recombination rate [12]. Doping and/or loading with transition metals is a promising approach to reducing the TiO_2 absorption threshold and extending its optical absorption range from the UV light region to the visible light region [14–18].

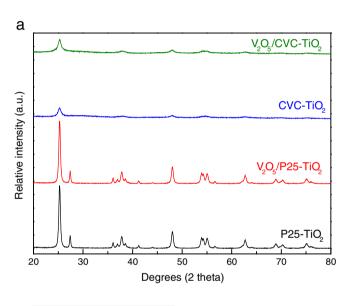
In this study, TiO₂ nanoparticles that were synthesized using the CVC method were further loaded with vanadium oxide using the impregnation method followed by thermal treatment. The resulting composite photocatalysts were systematically examined using a range of techniques. Based on the characterization results, the effect of the vanadium oxide loading on the photocatalytic properties of CVC-made TiO₂ was examined.

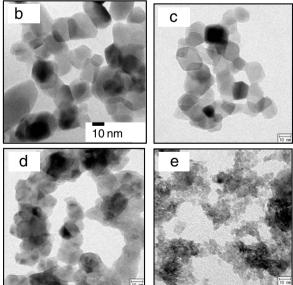
2. Material and methods

2.1. Catalyst synthesis

The CVC method was used to synthesize the TiO₂ particles. Detailed methods for the preparation of TiO₂ nanoparticles are described elsewhere [1]. Titanium tetraisopropoxide ([(CH₃)₂CHO]₄Ti, TTIP, Aldrich, >97%) was used as the TiO₂ precursor. The synthesis conditions for the TiO₂ nanoparticles included a precursor heating temperature and synthesis temperature of 95 °C and 900 °C, respectively. The V₂O₅ was prepared by impregnating the TiO₂ nanoparticles with an aqueous solution containing the appropriate amount of ammonium metavanadate (NH₄VO₃) followed by stirring for 1 h and heating at 150 °C for water evaporation. Finally, the prepared samples were dried overnight at 110 °C and calcined at 500 °C for 2 h in static air. The vanadium loading was kept at 5.0 wt.%. For comparison, commercial TiO₂ (Degussa, P25) was loaded with V₂O₅.

2.2. Catalyst characterization


The crystal phases of the prepared samples were examined using X-ray diffraction (XRD, Rigaku D/Max 2500) with Cu $K\alpha$ radiation.


^{*} Corresponding author. Tel: +82 2 958 5597; fax: +82 2 958 6711. *E-mail address*: jongsoo@kist.re.kr (J. Jurng).

Transmission electron microscopy (TEM) analysis was conducted using a CM-30 microscope (Philips; 300 kV; image resolution, <0.23 nm). The powder-specific surface area (SSA, m² g⁻¹) was determined by nitrogen adsorption (>99.999%) at77 K on a Micromeritics Tristar 3000 apparatus using the Brunauer–Emmett–Teller (BET) method. Assuming monodispersity and spherical primary particles, the BET–equivalent particle diameter ($d_{\rm BET}$) was calculated using the formula $d_{\rm BET}$ =6/(ρ ×SSA), where ρ is the particle density. X-ray photoelectron spectroscopy (XPS) was performed using a VG Scientific ESCA Lab II Spectrometer (resolution,0.1 eV) with Mg K α (1253.6 eV) radiation as the excitation source. All binding energies were referenced to the C 1-s peak at 285.0 eV for adventitious carbon. The UV–visible light (UV–vis) diffuse reflection spectra were obtained for the dry–pressed disk samples using a Scan UV–vis spectrophotometer (UV–vis DRS: TU–1901).

2.3. Photoactivity measurement

The photocatalytic activity of TiO₂ was characterized by measuring the methylene blue (MB) degradation rate. MB was selected because

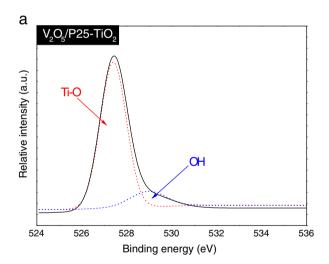

 $\label{eq:Fig.1.} \textbf{Fig. 1.} \ (a) \ X-ray \ diffraction patterns ("A" and "R" indicate anatase and rutile, respectively) and transmission electron microscopy images of (b) P25-TiO2, (c) V2O5/P25-TiO2, (d) CVC-TiO2, and (e) V2O5/CVC-TiO2.$

Table 1Physicochemical properties of the prepared samples.

Sample	S _{BET}	d _{BET} ^a (nm)	Edge wavelength (nm)	Band gab energy(eV)	r _i (%) ^b	
	$(m^2 g^{-1})$				Ti-O	ОН
P25-TiO ₂	52.2	26.9	420	2.95	85.5	14.5
$V_2O_5/P25$ -Ti O_2	53.1	29.1	450	2.76	84.0	16.0
CVC-TiO ₂	107.47	10.2	400	3.10	73.8	26.2
V ₂ O ₅ /CVC-TiO ₂	270.5	5.7	600	2.07	61.6	38.4

- ^a Particle size by equation using by BET surface area.
- ^b Area percentage (r_i) in the results of XPS spectra curve fitting in the O1s region for each sample.

of its strong adsorption to metal oxide surfaces, well-defined optical absorption, and good resistance to light degradation. The photocatalytic experiments were carried out at an initial pH of 7.0. The catalyst (80 mg) was mixed with 500 cm³ of a MB solution (~153 ppm) in a 500 cm³ beaker. The mixture was kept in the dark for 30 min to establish adsorption–desorption equilibrium before light irradiation was performed. The visible light illumination was carried out using a fluorescent lamp (FL15D-T25) with the wavelength range of 400–700 nm and a maximum intensity of 550 nm, producing a power of 10 W. The slurry was stirred constantly to avoid settling. The MB remaining in the solution was measured at absorbance of 600 nm using a spectro-photometer (Hach, DR-2800).

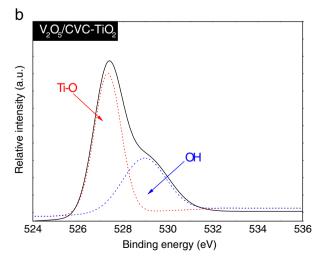


Fig. 2. X-ray photoelectron spectra of the O1s region for (a) $V_2O_5/P25$ -TiO $_2$ and (b) V_2O_5/CVC -TiO $_2$.

Download English Version:

https://daneshyari.com/en/article/8022366

Download Persian Version:

https://daneshyari.com/article/8022366

<u>Daneshyari.com</u>