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a b s t r a c t

The spectral representation method (SRM), based on the Cholesky decomposition of either cross spectral
density matrix or lagged coherency matrix, is widely used in the simulation of spatially varying ground
motions. In this study, the SRM, based on the decomposition of lagged coherency matrix, is modified
to apply to the common case which the auto spectral densities of simulation points are not the same.
When using interpolation approximation approach to improve the efficiency, the SRM based on the
decomposition of lagged coherency matrix exhibits much higher accuracy than the SRM based on the
decomposition of cross spectral density matrix, because the elements of lower triangular matrix obtained
by the Cholesky decomposition of lagged coherencymatrix vary slowlywith the frequency. Therefore, the
SRM, based on the decomposition of lagged coherency matrix, is generally suitable for the combination
with the interpolation approximation approach.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Real records of strong motion array show that the ground
motions vary within a small scale. When analyzing dynamic
responses of structures, uniform input is acceptable for small
structures, but not for large structures such as dams, bridges,
tunnels and buried pipelines. In fact, large structures are very
sensitive to the spatial variability of the earthquake groundmotion.
Therefore, it is necessary to use spatially varying ground motions
as input to analyze the dynamic problems of large structures.

The effect of spatial variability of earthquake ground motions
on the responses of large structures has been studied [1–12].
Among these studies, the frequency domain using stochastic
method and response spectrum method are usually adopted.
Others were on the basis of the time domain analysis. However,
both stochastic method and response spectrum method accept
the linear hypothesis. This assumption is not valid for most of
the structures which are relatively flexible and behave nonlinearly
because of either the geometrical or dynamic effect. In such cases,
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time domain analysis is essential to use. Consequently, one must
require seismic ground motions simulated at locations across the
structure span, which are correlated in both temporal and spatial
domains [13].

Simulation of spatially correlated earthquake ground motions
by the theoretical seismological approach is very complex. This
approach requires detailed knowledge of fault sizes, rupture
mechanisms, propagation paths (reflections, refractions), distance
from the epicenter, and local geological and topographical
conditions, and these data are usually not fully available [14].
Therefore, the stochastic approach proves useful for practical
applications.

Many stochastic methods are proposed to simulate spatially
varying seismic ground motions, which can be grouped into con-
ditional simulation [13–16] and unconditional simulation [17–24].
Some of these stochastic methods are systemically summarized
by Zerva [1]. Although many simulation methods are available,
the spectral representation method (SRM) is one of the popular
methods.

Rice [25] characterized a stochastic process using a spectral
representation for the first time. Later, Shinozuka [26,27] applied
the SRM to the simulation of Nd-1v or Nd-Nv homogeneous or
non-homogeneous stochastic processes. Hao et al. [17] earlier used
the SRM to simulate spatially varying ground motions. Shinozuka
and Deodatis [28] summarized the characteristic of the spectral
representation method in the simulation of Nd-1v stochastic
processes. Actually, the SRM is nonergodic in the simulation of
1d-Nv stochastic processes, thus Deodatis [29] further extended
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the spectral representation method to generate stochastic ergodic
sample functions by incorporating into the double-indexing
frequency. Deodatis [19] used the SRM to simulate spatial variate
seismic ground motions consistent with the target response
spectrum. Bi and Hao [24] extended the SRM to simulate spatially
varying ground motions at sites with varying conditions.

However, the main drawbacks of the SRM result in expense in
memory and time, especially under conditions of the large number
of simulation points or the frequency steps. Thus, it is important to
increase the simulation efficiency of the algorithm. The simulation
efficiency depends mainly on the decomposition of the matrix
and superposition of trigonometric functions. Based on these two
aspects, related studies tried to improve the simulation efficiency.

The Fast Fourier Transform (FFT) technique [30] was widely
employed to improve the superposition efficiency of trigonometric
functions. To improve the decomposition efficiency, Yang et al. [31,
32] gave the closed form solution of the Cholesky decomposition of
cross spectral densitymatrix to avoid the repetitive decomposition
of cross spectral density matrix in wind field simulation, when the
simulation points were distributed uniformly and the coherency
functions were exponential functions of distance. Cao et al. [33]
extended this solution to simulate the ergodicwind field. However,
this solution is usually limited in the simulation of seismic ground
motions, because above two conditions may not be satisfied. Ding
et al. [34] reduced the amount of cross spectral density matrix for
Cholesky decomposition by using the interpolation approximation
approach in wind field simulation; hence less computer memory
and elapsed time are realized.

The SRM combinedwith interpolation approximation approach
can also be applied in the simulation of spatially varying ground
motions. When using the interpolation approximation approach,
one question occurs: Is this scheme reliably to meet the high
accuracy?

The SRM, based on the Cholesky decomposition of lagged
coherency matrix, is modified to apply to the common case which
the auto spectral densities of simulation points are not the same.
Afterward, this paper investigates the numerical accuracy when
using the interpolation approximation approach.

2. Descriptions of ground motion field

The variations in the ground motion mainly result from the
following sources [35]: (i) loss of coherency of seismic waves due
to scattering in the heterogeneous medium of the ground, as well
as due to the differential superposition of waves arriving from an
extended source, collectively called as the ‘‘incoherence effect’’;
(ii) difference in the arrival times of waves at separate stations,
called as the ‘‘wave-passage effect’’; (iii) spatially varying local soil
profiles and the manner in which they influence the amplitude
and frequency content of the bedrock motion underneath each
station as it propagates upward, called as the ‘‘site-response
effect’’; and (iv) gradual decay of wave amplitudes with distance
due to geometric spreading and energy dissipation in the ground
medium, called as the ‘‘attenuation effect’’.

In practice, spatially varying ground motions can usually be
considered as a 1D-NV zero mean stationary Gaussian processes
V (t), which consists of N components v1(t), v2(t), . . . , vN(t).
In the probabilistic viewpoint, the relationship among the
components can be presented by the cross covariance matrix or
cross spectral density matrix.

The cross covariance matrix is expressed as:

RVV(τ ) =


R11(τ ) R12(τ ) · · · R1N(τ )
R21(τ ) R22(τ ) · · · R2N(τ )

...
...

. . .
...

RN1(τ ) RN2(τ ) · · · RNN(τ )


N×N

, (1)

where τ is time lag; Rjj(τ )( j = 1, 2, . . . ,N) are auto correlation
functions of the components and Rjk(τ )( j, k = 1, 2, . . . ,N, j ≠ k)
are the corresponding cross correlation functions. Based on the
stationary hypothesis, the following relations are satisfied:

Rjj(τ ) = Rjj(−τ), j = 1, 2, . . . ,N (2a)
Rjk(τ ) = Rkj(−τ),

j = 1, 2, . . . ,N; j, k = 1, 2, . . . ,N; j ≠ k. (2b)

And the cross spectral density matrix is given as:

SVV(ω) =


S11(ω) S12(ω) · · · S1N(ω)
S21(ω) S22(ω) · · · S2N(ω)

...
...

. . .
...

SN1(ω) SN2(ω) · · · SNN(ω)


N×N

, (3)

where Sjj(ω)( j = 1, 2, . . . ,N) are real-defined auto spectral
densities of the N components, and Sjk(ω)( j, k = 1, 2, . . . ,N, j ≠

k) are the corresponding cross spectral densities, which are usually
defined as:

Sjk(ω) = γjk(ω)

Sjj(ω)Skk(ω), (4)

where γjk(ω) is the coherency function, which can further be given
as [35]:

γjk(ω) = γjk(ω)incoherenceγjk(ω)wave passageγjk(ω)site response

=
γjk(ω)

 ei[θw
jk (ω)+θ sjk(ω)]

, (5)

where |γjk(ω)| is the lagged coherency function, conforming the
following relationship:γjk(ω)

 =
γkj(ω)

 . (6)

θjk(ω)w is phase change due to ‘‘wave-passage effect’’, which is
defined as:

θjk(ω)w = −ωdLjk/va, (7)

where vα is the apparent wave velocity and dLjk is the projection of
djk on the ground surface in the direction of propagation of seismic
waves, and we have:

dLjk = −dLkj (8a)

dLij − dLik = dLkj. (8b)

When considering the above relationship of dLjk, the following
relations concerning θjk(ω)w hold:

θjk(ω)w = −θkj(ω)w = −θjk(−ω)w = θkj(−ω)w (9a)

θij(ω)w − θik(ω)w = θkj(ω)w. (9b)

And θjk(ω)s is the phase change due to ‘‘site-response effect’’,
which is defined as:

θjk(ω)s = tan−1 Im[Hgj(ω)Hgk(−ω)]

Re[Hgj(ω)Hgk(−ω)]
, (10)

where Hgj(ω) and Hgk(ω) are the frequency response functions of
the first filter corresponding to point j and point k respectively,
shown in Eq. (28). Therefore, the following relations relating to
θjk(ω)s are:

θjk(ω)s = −θkj(ω)s = −θjk(−ω)s = θkj(−ω)s (11a)

θij(ω)s − θik(ω)s = θkj(ω)s. (11b)

Taking into account Eqs. (6), (9) and (11), the following relations
about Sjk(ω) can be derived:

Sjk(ω) = S∗

jk(−ω) = S∗

kj(ω) = Skj(−ω), (12)

where the subscript ‘‘*’’ denotes the complex conjugate.
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