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1. Introduction

Separation processes are fundamental in the biopharmaceutical, food, agricultural, chemical and petrochemical indus-
tries. Traditional separation techniques commonly used in these industries include distillation, pressure- and
temperature-swing adsorption, and extraction. These technologies have high carbon footprints and are energy intensive.
Compared with traditional separation technologies, membrane separation is more attractive due to its low carbon footprint,
small spatial requirements and a lack of a phase transition in most cases [1-17]. In recent years, the impending global energy
shortage and various environmental issues have accelerated the development of membrane separation, particularly in mem-
brane assembly using nanotechnology and scale-up translations of membrane science for commercialization [1-17]. Mem-
brane science typically involves chemical synthesis, material science, advanced characterization techniques, membrane
manufacturing and modification, module design and process engineering. Therefore, advances in membrane science can
simultaneously evolve separation techniques in practical industries and facilitate progression in related science and manu-
facturing industries.

Membrane separation is typically deployed to extract products (active molecules) from solvents or purify solvents for
recycled use. The size of most aqueous organic contaminants and active molecules such as antibiotics, amino acid,
dyes and some proteins is between 0.5 and 5 nm. Ideal separation techniques that isolate these molecules are the
pore-size-dominated separation processes of nanofiltration (NF) and ultrafiltration (UF) [7-11]. In these processes, solutes
are separated from aqueous solutions and organic media. Conventional molecular-sieving NF/UF membranes are fabricated
using thick layers of selective polymeric materials with low porosities and broad pore size distributions, limiting their
applications [18-22]. Based on the Hagen-Poiseuille equation, the solution flux is proportional to the pressure difference
across the membrane and the porosity, and it is inversely proportional to the membrane thickness [23]. Therefore, the
thickness and porosity of the selective layer are critical for obtaining polymeric membranes with high flux. Ultrathin
membranes with additional passageways for molecular transportation can be fabricated by a combination of advanced
nanotechnology, contemporary membrane materials, membrane fabrication strategies, and emerging engineering
processes. The 0.5-5 nm pore size of these membranes is ideal for separating/removing organic molecules from water
or solvents. As these membranes are usually deployed for separating dilute solutions, the solvent permeances (solvent
flux) of such membranes are several orders of magnitudes higher than commercial membranes [24-73] with comparable
rejection under standard operating conditions and have attracted significant attention. Considering the features of this
class of membranes, we named these membranes as ultrafast molecular separation (UMS) membranes for consistency
in the current work. With improvements in separation efficiency, UMS membranes can replace traditional energy-
intensive separation processes, especially for very dilute system separations with negligible concentration polarization.
Potentially, UMS membranes can also become the mainstay separation technique for technologically important fields such
as wastewater treatment, fine chemical separation, food processing, and pharmaceutical production. Hence, it is critical to
update the scientific community on such advances. This review starts with the most important aspects of UMS
membranes with unique pore sizes ranging from 0.5 to 5 nm, including their properties and unique advantages, followed
by a detailed discussion on the theory underpinning ultrafast molecular transport. Through comparisons with traditional
fabrication techniques, crucial fabrication approaches for UMS membranes is discussed in the next section. A further
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