

Contents lists available at ScienceDirect

Progress in Materials Science

journal homepage: www.elsevier.com/locate/pmatsci

Advances in tailoring the electronic properties of single-walled carbon nanotubes

Progress in Materials Science

Marianna V. Kharlamova*

Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria Department of Materials Science, Lomonosov Moscow State University, Leninskie gory 1-3, 119991 Moscow, Russia

ARTICLE INFO

Article history: Received 19 January 2014 Received in revised form 9 December 2014 Accepted 9 May 2015 Available online 28 September 2015

Keywords: Single-walled carbon nanotube Filling Nanochemical reaction Electronic properties Electron acceptor Electron donor Doping

ABSTRACT

Considerable progress has been made in the last several years in the fields of investigation and understanding of the influence of encapsulated substances on the electronic properties of singlewalled carbon nanotubes (SWCNTs). Relevant data on the modified electronic properties of filled SWCNTs were obtained. The possibility of achieving both acceptor and donor doping and precise changes of the SWCNT doping level by the filling of channels and transformation of incorporated substances was demonstrated. This article presents a comprehensive review of the current status of the research on the electronic properties of filled SWCNTs. The review begins with a brief description of basic aspects of the band theory of solids and peculiarities of the band structure and electronic properties of SWCNTs. The next part of the review is dedicated to a systematization and description of different methods for modification of the SWCNT electronic properties. Then, the review introduces filling methods of SWCNT inner channels. The main part of the review is dedicated to an analysis, systematization and generalization of the up-to-date reported results on experimental and theoretical investigations of the electronic properties of filled SWCNTs and nanostructures obtained as result of chemical reactions inside the SWCNT channels. Finally, the possible applications of filled nanotubes are highlighted.

© 2015 Elsevier Ltd. All rights reserved.

* Address: Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria. Tel.: +43 (0)1 42 77 51304; fax: +43 (0)1 42 77 51375.

E-mail address: mv.kharlamova@gmail.com

http://dx.doi.org/10.1016/j.pmatsci.2015.09.001 0079-6425/© 2015 Elsevier Ltd. All rights reserved.

Nomenclature

Acron	
AFM	atomic force microscopy
BWF	Breit–Wigner–Fano function
CVD	chemical vapor deposition
DFT	density functional theory
DMF	dimethylformamide
DNBN	3,5-dinitrobenzonitrile
DOS	density of states
	NT double-walled carbon nanotube
EC charging electrochemical charging	
EELS	electron energy loss spectroscopy
F ₄ TCN	IQ tetrafluorocyano-p-quinodimethane
FWHI	
	M high-resolution transmission electron microscopy
LO phonon longitudinal optical phonon	
MRI	magnetic resonance imaging
NIR	near-infrared
NT	nanotube
OAS	optical absorption spectroscopy
PLS	photoluminescence spectroscopy
QM	quantum-chemical modeling
RBM	radial breathing mode
RS	Raman spectroscopy
STS	scanning tunneling spectroscopy
SWC	8
TCNQ	
TDAE TEM	
	transmission electron microscopy
TMTS	5
TO phonon transversal optical phonon TTF tetrathiafulvalene	
UPS	ultraviolet photoelectron spectroscopy
UV	ultraviolet
vHs	van Hove singularities
WF	work function
XAS	X-ray absorption spectroscopy
XES	X-ray emission spectroscopy
XPS	X-ray photoelectron spectroscopy
	/CNT single-walled carbon nanotube filled with substance X
1D	one-dimensional
Symbo	bls
5	$\mathbf{a_3}$ basis vectors of the direct lattice
a a	lattice parameter of a graphene layer
a_{c-c}	the nearest-neighbor carbon–carbon distance in a graphene layer
	$\mathbf{b_3}$ basis vectors of the reciprocal lattice
C _h	chiral vector of a nanotube
d	the highest common divisor of chirality indexes n and m of a nanotube
d_R	the greatest common divisor of $2m + n$ and $2n + m$
d_t	diameter of nanotube
D(E)	density of states
$D(E_F)$	density of states at the Fermi energy

Download English Version:

https://daneshyari.com/en/article/8023118

Download Persian Version:

https://daneshyari.com/article/8023118

Daneshyari.com