

Contents lists available at ScienceDirect

Progress in Materials Science

journal homepage: www.elsevier.com/locate/pmatsci

Ion beam modification of dielectric materials in the electronic excitation regime: Cumulative and exciton models

Progress in Materials Science

Fernando Agulló-López ^{a,*}, Aurelio Climent-Font ^{a,b}, Ángel Muñoz-Martín ^a, José Olivares ^{a,c}, Alessandro Zucchiatti ^a

^a Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, Madrid E-28049, Spain

^b Departamento de Física Aplicada, Universidad Autónoma de Madrid, Madrid E-28049, Spain

^c Instituto de Óptica, Consejo Superior de Investigaciones Científicas (CSIC), C/ Serrano 121, E-28006 Madrid, Spain

ARTICLE INFO

Article history: Received 31 December 2014 Received in revised form 28 May 2015 Accepted 26 June 2015 Available online 8 September 2015

Keywords: Ion beams Electronic excitation processes Materials modification Irradiation damage Ion tracks Excitonic models

ABSTRACT

Main experimental evidences and theoretical models, currently used to describe the modification of dielectric materials by swift-heavy ion (SHI) beams, operating in the electronic stopping regime, are reviewed. The emphasis is on the interplay and synergy between point defects and amorphous tracks. This implies a change of focus from purely thermal approaches to those based on the generation and accumulation of irradiation-induced defects followed by some type of lattice collapse and structural change. To that end special attention has been paid to experiments performed at electronic stopping powers around the threshold value for track formation. In particular, approaches based on the non-radiative decay of selftrapped excitons (STEs) have been more extensively discussed. The discussion is illustrated by dealing in some detail a few specific materials such as alkali halides (NaCl), SiO₂ and LiNbO₃ where STEs are, or very likely, ascertained. The review stresses the connection between the SHI-induced effects and those caused by femtosecond laser pulse irradiations. Moreover, electronic effects on SiO₂ materials are discussed due to their technological relevance and because they offer an example of the interplay between thermal and excitonic effects. Finally, the potential of SHI irradiation for various technologies, with particular emphasis on photonics, is discussed. © 2015 Elsevier Ltd. All rights reserved.

* Corresponding author. Tel.: +34 91 497 3621; fax: +34 91 497 3623. *E-mail address:* fal@uam.es (F. Agulló-López).

http://dx.doi.org/10.1016/j.pmatsci.2015.06.002 0079-6425/© 2015 Elsevier Ltd. All rights reserved.

	Contents	
--	----------	--

1.	General introduction	. 2
2.	Processes triggered by electronic excitation.	. 5
	2.1. Ion-matter interaction: basic concepts and phenomena	. 5
	2.2. Electronic interactions	. 7
	2.3. Radial profile of energy associated to ballistic electrons	. 8
	2.4. Electron–lattice coupling: the thermal spike	. 9
	2.5. Electronic processes during the spike: energy balance between the electron and phor	non
	systems	11
	2.6. Electrostatic and pressure effects: Coulomb explosion and shock waves	13
3.	Structural effects of electronic excitation	13
	3.1. General features	13
	3.2. Amorphous tracks	14
	3.3. Thresholding behavior	16
	3.4. Ion track morphology: core and halo	18
	3.5. Cumulative character of damage: track overlapping and amorphization	20
	3.6. Kinetics of amorphization.	23
	3.7. Threshold dependence on prior SHI damage	24
	3.8. Comparison between fs-pulse laser and ion-beam irradiation features	25
	3.9. Radiation-induced electronic sputtering	26
4.	Mechanisms and models	28
	4.1. General introduction	28
	4.2. Thermal spike models for track formation	29
	4.2.1. Molecular dynamics (MD) simulations of the spike	30
	4.2.2. The analytical Szenes approximation to the thermal spike	30
	4.3. An extended thermal spike model: thermally-activated atomic displacements (bond-breaking)	31
	4.4. Modeling for sputtering emission	34
5.	Non-radiative exciton recombination models	35
	5.1. Introduction	35
	5.2. General criteria for the applicability of exciton models	36
	5.3. A quantitative phenomenological exciton model	37
	5.4. Application to SHI damage to LiNbO ₃	38
	5.5. The exciton model for purely ionizing damage to alkali halides (NaCl)	40
	5.5.1. Exciton-model simulation of the SHI irradiation experiments	41
6.	SHI damage to SiO ₂ materials (quartz and silica): role of excitonic models	42
	6.1. Structural considerations: STEs and color centers	43
	6.2. Macroscopic effects on quartz (amorphization) and silica (compaction).	44
	6.3. Microscopic structural effects: color center creation	45
7.	Technological implications	46
	7.1. Nanotechnologies	46
	7.2. Photonics	47
	7.3. Nuclear power technologies	49
	7.4. Other potential applications: space technology and biomedicine	50
8.	Summary and conclusions: future perspectives	50
	Acknowledgements	51
	References	51

1. General introduction

Light ions (mostly H and He) with energies in the MeV range are now a standard tool for the analysis and characterization of materials, components and devices [1,2], including objects of archaeological or artistic relevance [3,4], as well as biological [5], and environmental [6] samples. On the other hand, ion bombardment, together with ion implantation, offers a universal procedure

Download English Version:

https://daneshyari.com/en/article/8023120

Download Persian Version:

https://daneshyari.com/article/8023120

Daneshyari.com