

Contents lists available at ScienceDirect

Progress in Materials Science

journal homepage: www.elsevier.com/locate/pmatsci

Perspectives on oblique angle deposition of thin films: From fundamentals to devices

Progress in Materials Science

Angel Barranco, Ana Borras, Agustin R. Gonzalez-Elipe*, Alberto Palmero

Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/ Americo Vespucio 49, 41092 Seville, Spain

ARTICLE INFO

Article history: Received 9 October 2014 Received in revised form 19 May 2015 Accepted 12 June 2015 Available online 28 August 2015

Keywords: Oblique angle deposition Glancing angle deposition Magnetron sputtering Electron beam evaporation Nanostructured films Growth modeling Monte Carlo Thin film devices Transparent conductive oxide Energy harvesting Sensors Optical devices Wetting **Biomaterials** Biosensing GLAD Photovoltaic cells

ABSTRACT

The oblique angle configuration has emerged as an invaluable tool for the deposition of nanostructured thin films. This review develops an up to date description of its principles, including the atomistic mechanisms governing film growth and nanostructuration possibilities, as well as a comprehensive description of the applications benefiting from its incorporation in actual devices. In contrast with other reviews on the subject, the electron beam assisted evaporation technique is analyzed along with other methods operating at oblique angles, including, among others, magnetron sputtering and pulsed laser or ion beam-assisted deposition techniques. To account for the existing differences between deposition in vacuum or in the presence of a plasma, mechanistic simulations are critically revised, discussing well-established paradigms such as the tangent or cosine rules, and proposing new models that explain the growth of tilted porous nanostructures. In the second part, we present an extensive description of applications wherein oblique-angle-deposited thin films are of relevance. From there, we proceed by considering the requirements of a large number of functional devices in which these films are currently being utilized (e.g., solar cells, Li batteries, electrochromic glasses, biomaterials, sensors, etc.), and subsequently describe how and why these nanostructured materials meet with these needs.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).

* Corresponding author. *E-mail address:* arge@icmse.csic.es (A.R. Gonzalez-Elipe).

http://dx.doi.org/10.1016/j.pmatsci.2015.06.003

0079-6425/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1.	Obliq	ue angle	deposition of thin films	. 61
	1.1.	Introdu	ıction	. 61
	1.2.	Structu	re, organization and review content	. 62
2.	Shado	hadowing effects and film morphology		
	2.1.	Introdu	ıction	. 64
	2.2.	Thin fil	m deposition at oblique angles	. 64
		2.2.1.	Geometry of the deposition processes and shadowing effects	64
	2.3.	Effects	of temperature and deposition rate on the morphology of OAD thin films	. 65
	2.4.	Sculptu	red thin films	. 68
	2.5.	OAD or	n nanostructured substrates	. 70
	2.6.	Evapora	ation from two sources	. 71
3.	Alterr	Alternative processes, and the microstructure and crystallographic structure of OAD thin films		
	3.1.	. Vapor-liquid-solid deposition		
	3.2.	2. Magnetron sputtering		
	3.3.	Pulsed	sed laser deposition	
	3.4.	Plasma-assisted deposition.		
	3.5.	OAD of	thin films under the impingement of energetic species	. 75
		3.5.1.	High-power impulse magnetron sputtering	76
		3.5.2.	Ion-assisted deposition.	77
	3.6.	Microst	tructure of OAD thin films	. 78
		3.6.1.	Surface roughness and nanocolumn width	78
		3.6.2.	Correlation distance and bundling association	79
		3.6.3.	Porosity and adsorption properties	80
	3.7.	Texture	e and crystalline structure of OAD thin films	. 82
4.	New o	w concepts for process-control in oblique angle depositions: simulations and experiments 85		
	4.1.	4.1. Methods to model the shadowing-dominated growth of thin films		
	4.2.	Evapora	ation at oblique angles under ballistic conditions	. 88
		4.2.1.	Nanocolumn tilt angle and the surface trapping mechanism	89
		4.2.2.	Surface area, roughness and bundling association of nanocolumns in OAD films	91
	4.3.	Magnet	tron sputtering deposition at oblique angles	. 92
		4.3.1.	MS-OAD of thin films versus evaporation	92
		4.3.2.	Sputtering and transport of sputtered particles in plasma	93
		4.3.3.	Deposition rate at oblique incidence	95
-		4.3.4.	Microstructure phase map for OAD-MS thin films	96
5.	Applications and devices			. 99
	5.1.	Transpa	arent conductive oxides	. 99
		5.1.1.	Electronic and photonic applications	102
		5.1.2.	Solar cell components	102
		5.1.3.	Sensors and biosensors	103
	5.2	5.1.4.	Alternative ICO films prepared under OAD conditions	103
	5.2.	Energy	Indrvesting and storage	103
		5.2.1.	Motor enlitting fuel cells and hudenness stores	104
		5.2.2. 5.2.2	Valer spitting, luer cens and hydrogen storage	111
		5.2.3.	LI-IOII Datteries	115
		5.2.4.	Electrochromic applications.	110
	5 0	5.2.5. Samaana		110
	5.3.	Sensors)	110
		5.5.1.		110
		5.5.2.	Liquid selisors	120
	Г 4	0.5.5. Omtion	Pressure sensors and devices	120
	5.4.	5 4 1	applications and devices	121
		J.4.1. 5 4 7	rassive optical applications and douisos	121
	55	J.4.2.	Active optical applications and devices	124
	5.5.		g anu micronululus	129
		J.J.I. 557	Jight controlled surface wettability	129
		J.J.Z.	Nanocarpat offact	100
		J.J.J.	וימווטנמו אבו בווכנו	101

Download English Version:

https://daneshyari.com/en/article/8023122

Download Persian Version:

https://daneshyari.com/article/8023122

Daneshyari.com