Accepted Manuscript

Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: Effect of MoS2 particle addition

Bih-Show Lou, Jyh-Wei Lee, Chuan-Ming Tseng, Yi-Yuan Lin, Chien-An Yen

PII:	S0257-8972(18)30405-5
DOI:	doi:10.1016/j.surfcoat.2018.04.044
Reference:	SCT 23328
To appear in:	Surface & Coatings Technology
Received date:	2 December 2017
Revised date:	21 March 2018
Accepted date:	16 April 2018

Please cite this article as: Bih-Show Lou, Jyh-Wei Lee, Chuan-Ming Tseng, Yi-Yuan Lin, Chien-An Yen, Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: Effect of MoS2 particle addition. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Sct(2017), doi:10.1016/j.surfcoat.2018.04.044

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: effect of MoS₂ particle addition

Bih-Show Lou^{1, 2}, Jyh-Wei Lee^{3, 4, 5*}, Chuan-Ming Tseng³, Yi-Yuan Lin³, Chien-An Yen³

¹Chemistry Division, Center of General Education, Chang Gung University, Taoyuan, Taiwan

²Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital,

Taoyuan, Taiwan

³Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan

⁴Center for Thin Film Technologies and Applications, Ming Chi University of Technology, New Taipei City, Taiwan

⁵College of Engineering, Chang Gung University, Taoyuan, Taiwan

* Corresponding author

Abstract

<u>Magnesium</u> alloys have been used in a wide range of lightweight applications <u>in industries</u> such as aerospace, automotive, and personal <u>computing</u> due to <u>their</u> high strength to weight ratio; <u>however</u>, high chemical reactivity, poor corrosion and wear resistance limit their widespread uses in many fields. The plasma electrolytic oxidation (PEO) process can produce <u>a</u> protective oxide layer on the magnesium alloy to <u>improve the mechanical properties that limit more widespread</u> application of magnesium alloys. In this work, molybdenum disulphide (MoS₂) nanoparticles in concentrations ranging from 0 to 10 g/L were added into the <u>PEO electrolyte</u>. The aim of this study is to investigate the influence of incorporating MoS₂ nanoparticles on the microstructure, phase, as <u>well as short- and long-term corrosion resistance</u>, and other mechanical properties of PEO grown oxide, the addition of MoS₂

Download English Version:

https://daneshyari.com/en/article/8023282

Download Persian Version:

https://daneshyari.com/article/8023282

Daneshyari.com