#### Accepted Manuscript

Rapid oxidation of CVD-grown graphene using mild atmospheric pressure O2 plasma jet

SURFACE & GOATINGS TECHNOLOGY

Chi-Hsien Huang, Tsung-Han Lu

PII: S0257-8972(18)30149-X

DOI: https://doi.org/10.1016/j.surfcoat.2018.02.031

Reference: SCT 23102

To appear in: Surface & Coatings Technology

Received date: 13 November 2017 Revised date: 23 January 2018 Accepted date: 7 February 2018

Please cite this article as: Chi-Hsien Huang, Tsung-Han Lu, Rapid oxidation of CVD-grown graphene using mild atmospheric pressure O2 plasma jet. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Sct(2017), https://doi.org/10.1016/j.surfcoat.2018.02.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

### **ACCEPTED MANUSCRIPT**

# 

Chi-Hsien Huang\* and Tsung-Han Lu

Department of Materials Engineering, Ming Chi University of Technology, New

Taipei City 243, Taiwan

Corresponding Author:

Tel.:+886-2-29089899. Fax: +886-2-29041914. Email address:

chhuang@mail.mcut.edu.tw. Address: 84 Gungjuan Rd., Taishan Dist., New Taipei

City 243, Taiwan

Abbreviations: MAPPJ, mild low damage atmospheric pressure plasma jet; GO, graphene oxide; UV, ultraviolet; MWCNTs, multi-walled carbon nanotubes, SLG, single layer graphene; Cu, copper; CVD, chemical vapor deposition; PMMA, poly(methyl methacrylate); XPS, X-ray photoelectron spectroscopy; CA, contact angle.

#### Download English Version:

## https://daneshyari.com/en/article/8023354

Download Persian Version:

https://daneshyari.com/article/8023354

<u>Daneshyari.com</u>