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a b s t r a c t

Linear models are finite sums of specified deterministic, continuous functions of time with random
coefficients. It is shown that linear models provide (i) accurate approximations for real-valued non-
Gaussian processes with continuous samples defined on bounded time intervals, (ii) simple solutions
for linear random vibration problems with non-Gaussian input, and (iii) efficient techniques for selecting
optimal designs fromcollections of proposed alternatives. Theoretical arguments andnumerical examples
are presented to establish properties of linear models, illustrate the construction of linear models, solve
linear random vibration with non-Gaussian input, and propose an approach for optimal design of linear
dynamic systems. It is shown that the proposed linearmodel provides an efficient tool for analyzing linear
systems in non-Gaussian environment.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is common in applications to examine the performance
of proposed alternative designs for dynamic systems subjected
to random input processes and select designs that are optimal
in some sense. For example, wind tunnel studies and response
estimates are used to extract final designs for high rise buildings
from proposed alternatives. The calculation of response statistics
poses notable difficulties since wind loads are non-Gaussian
processes [1], and there exists no simple, accurate, and efficient
method for calculating statistics of even linear systems in non-
Gaussian environment. Monte Carlo simulation is the only general
method for solving linear random vibration with non-Gaussian
noise but its computation demand can be excessive. This limits the
number of alternative designs that can be investigated and/or the
number of samples used to estimate response statistics.

We develop linear models for non-Gaussian stationary and
nonstationary stochastic processes, that are defined by finite sums
of specified deterministic function with random coefficients. For
example, let X(t), t ∈ [0, τ ], be a real-valued stochastic process
defined on a probability space (Ω, F , P), and denote by

X (n)(t, ω) = C0(ω) +

n−
k=1

Ck(ω) θk(t),

t ∈ [0, τ ], n = 1, 2, . . . , (1)
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a sequence of linear models for X(t), where {Ck} are random
variables defined on (Ω, F , P) and {θk} are specified, deterministic
functions of time.

Linear models have been and are used extensively in appli-
cations to represent approximately the first two moments for
stochastic processes X(t) with finite variance and the probability
law for Gaussian processes. For example, if X(t) is aweakly station-
ary m.s. continuous process with mean 0 and one-sided spectral
density g(ν), it admits the spectral representation

X(t) =

∫
∞

0
(cos(ν t) dU(ν) + sin(ν t) dV (ν)), (2)

where the integral is defined in the mean square sense and U and
V are real-valued processes with orthogonal increments such that
E[U(ν)] = E[V (ν)] = 0, E[dU(ν) dV (ν ′)] = 0, and E[dU(ν)2] =

E[dV (ν)2] = g(ν) dν ([2], Section 3.9.4.1). IfX(t) is or is notweakly
stationary, has mean 0, and its correlation function is continuous
and square integrable in [0, τ ] × [0, τ ], then

X(t, ω) =

∞−
k=1

λ
1/2
k θk(t) Yk(ω), t ∈ [0, τ ], (3)

where {Yk} are uncorrelated random variables with mean 0
and variance 1 and {λk, θk(t)} denote the eigenvalues and
eigenfunctions of the operator equation A[θ ] = λ θ with
A[θ(t)] =

 τ

0 E[X(s) X(t)] θ(s) ds. The series in Eq. (3), referred
to as the Karhunen–Loéve expansion of X(t), is convergent in
the mean square sense ([3], Section 6.2). Discrete versions of
the spectral representation in Eq. (2) and truncated versions of
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the Karhunen–Loéve expansion in Eq. (3) define linear models
of the type in Eq. (1). These models provide no information
beyond the first two moments of X(t), unless this process
is Gaussian. Relationships between spectral representation and
Karhunen–Loéve expansions are discussed in [4].

Linear models provide a conceptually simple and computation-
ally efficient solutions to linear random vibration problems with
non-Gaussian input. Let U(t) be the solution of a linear random
vibration problem defined by a stochastic differential equation
L[U(t)] = X(t), where L is a linear operator. The mean and co-
variance functions of U(t) can be calculated simply by methods of
linear random vibration ([2], Section 7.2.1.1). Monte Carlo simula-
tion is the only general method for finding higher order properties
of U(t). We propose to approximate U(t) by the solution U (n)(t)
of L[U (n)(t)] = X (n)(t), where X (n)(t) is a linear model of X(t).
Since L is a linear operator, U (n)(t) =

∑n
k=0 Ck L−1

[θk(t)] is a lin-
earmodel forU(t), whereL−1

[θk(t)] are responses of the dynamic
system to the deterministic functions {θk(t)} and θ0(t) = 1. Statis-
tics of U (n)(t) can be calculated simply and efficiently from its ex-
pression and properties of the random variables {Ck}.

Our objectives are to (1) develop a method for constructing
linear models X (n)(t) for non-Gaussian processes X(t), (2) assess
the accuracy of linear models as a function of their order n
and sample properties of X(t), (3) solve linear random vibration
problems with non-Gaussian input by linear models, and (4) show
that the proposed linear model provides an accurate tool for
analyzing linear systems in non-Gaussian environment that can be
used to assess the performance of a large number of alternative
designs. Theoretical arguments are used to prove that under
some conditions the processes X (n)(t) and X(t) as well as the
solutions U (n)(t) and U(t) of linear systems subjected to these
processes have similar statistics. These arguments are supported
by numerical examples.

2. Trigonometric polynomials

Let x(t) be a real-valued, continuous, periodic function with
period τ > 0. We set τ = 2π without loss of generality since
y(t̃) = x(t̃ τ/(2π)), t̃ ∈ [0, 2π ], obtained from x(t) by distorting
its time scale is a real-valued, continuous, periodic function with
period 2π . Accordingly, x(t) is considered to be a member of the
set Cper[0, 2π ] of real-valued, continuous, periodic functions with
period 2π , so that x(t) = x(t + 2 r π), r ∈ Z, at all times t ∈ R.

Let

Pn[0, 2π ] =


q(t) =

a0
2

+

n−
k=1

[ak cos(k t) + bk sin(k t)]


(4)

denote the space of trigonometric polynomials of degree or order
n, where {ak} and {bk} are real-valued coefficients. For a fixed
n, Pn[0, 2π ] is a linear subspace of Cper[0, 2π ]. Following are
the properties of Pn[0, 2π ] that are relevant to our objective of
constructing linear models for non-Gaussian stochastic processes.

1. For any x ∈ Cper[0, 2π ] and ε > 0, there exists q ∈ Pn[0, 2π ]

such that ([5], Theorem 13.1)

‖x − q‖∞ = sup
0≤t≤2π

|x(t) − q(t)| ≤ ε. (5)

This theorem shows that it is always possible to find a degree
n and a polynomial q ∈ Pn[0, 2π ] that is as close as desired to
x ∈ Cper[0, 2π ]. Hence, optimization algorithms searching for a
pair (n, q) with the above properties can be constructed.

2. The trigonometric polynomials in Pn[0, 2π ] minimize the least
square distance function d(x, q) = [

 π

−π
(x(t)−q(t))2 dt]1/2 if and

only if the coefficients {ak, bk} of q ∈ Pn[0, 2π ] are the Fourier
coefficients of x(t) given by ([5], Theorem 13.2)

ak =
1
π

∫ 2π

0
x(t) cos(k t) dt, k = 0, 1, . . . , n,

bk =
1
π

∫ 2π

0
x(t) sin(k t) dt, k = 1, 2, . . . , n. (6)

The resulting trigonometric polynomial q is a truncated Fourier
series of x(t). Since the mean square error of q is ([6], Section
2.5)∫ 2π

0
(x(t) − q(t))2 dt =

∫ 2π

0
x(t)2 dt

−


a20
2

+

n−
k=1

(a2k + b2k)


, (7)

it is possible to find a truncation level n for the Fourier series of
x(t) such that its m.s. error does not exceed a specified value.

3. If x ∈ C (1)
per[0, 2π ], then ([5], Theorem 15.1)

min
q∈Pn[0,2π ]

‖x − q‖∞ ≤
π

2(n + 1)
‖ẋ‖∞, (8)

where C (r)
per[0, 2π ], r = 1, 2, . . ., is the linear space of real-

valued periodic functions with period 2π that have continuous rth
derivative and ẋ(t) = dx(t)/dt .
The bound in Eq. (8) shows that the error of the optimalmember
of Pn[0, 2π ], that is, q ∈ Pn[0, 2π ] with the smallest error
‖x − q‖∞, is of order O(n−1), and that it is possible to select a
polynomial q∗ of order n∗ such that ‖x− q∗

‖∞ does not exceed
a specified value.

We focus on linear models of the type in Eq. (1) with {θk(t)}
selected from the complete set of functions (1, cos(t), sin(t), . . . ,
cos(k t), sin(k t), . . .) spanning Cper[0, 2π ], so that the linear
models under consideration are members of Pn[0, 2π ]. The
emphasis is on these types of models since trigonometric
polynomials have been and are used extensively to construct
approximate representations for stochastic processes. Algebraic
and other polynomials can be used for the basis functions {θk(t)}
since they have properties similar to those of the members of
Pn[0, 2π ] ([5], Chapters 12 and 16).

If x(t) is periodic with period 2π but x(0) ≠ x(2π), there is
no sequence of polynomials in Pn[0, 2π ] that converges to x(t) at
t = 2 r π , r ∈ Z ([6], Section 1.10). However, x(t) can be altered
such that its modified version is in Cper[0, 2π ] and its values at the
ends of [0, 2π ] coincide. Let

y(t̃) = x(t̃) 1(0 ≤ t̃ ≤ 2π − ε) + [x(2π) + x(0)

− x(2π) (t̃ − 2π + ε)/ε]1(2π − ε < t̃ ≤ 2π), (9)

where ε ∈ (0, 2π) is arbitrary and t̃ = (1− ε/(2π)) t , t ∈ [0, 2π ].
We note that y ∈ Cper[0, 2π ], y(0) = y(2π), y(t̃) for t̃ ∈ [0, 2π−ε]

gives x(t) for t ∈ [0, 2π ] viewed in a distorted clock with time
units t̃ , and y(t̃) in [2π − ε, 2π ] is a line connecting the points
y(2π − ε) = x(2π) and y(2π) = x(0). Higher order splines can
be used to define y(t̃) in [2π − ε, 2π ] such that, for example, y ∈

C (1)
per[0, 2π ] if x(t) is continuously differentiable. Once a polynomial

representation q(t̃) has been developed for y(t̃), x(t), t ∈ [0, 2π ],
can be approximated by q(2π t̃/(2π −ε)), t̃ ∈ [0, 2π −ε]. We also
note that these considerations extenddirectly to functions x(t) that
are not periodic but are defined on a bounded interval.
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