Accepted Manuscript

Corrosion resistance of anodic coatings studied by scanning microscopy and electrochemical methods

J. Kubisztal, M. Kubisztal, S. Stach, G. Haneczok

PII:	S0257-8972(18)30731-X
DOI:	doi:10.1016/j.surfcoat.2018.07.032
Reference:	SCT 23598
To appear in:	Surface & Coatings Technology
Received date:	12 May 2018
Revised date:	8 July 2018
Accepted date:	9 July 2018

Please cite this article as: J. Kubisztal, M. Kubisztal, S. Stach, G. Haneczok, Corrosion resistance of anodic coatings studied by scanning microscopy and electrochemical methods. Sct (2018), doi:10.1016/j.surfcoat.2018.07.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Corrosion resistance of anodic coatings studied by scanning microscopy and electrochemical methods

J. Kubisztal^{1,*}, M. Kubisztal¹, S. Stach², G. Haneczok¹

 ¹Institute of Materials Science, University of Silesia, 41-500 Chorzów, 75 Pułku Piechoty 1a, Poland
²Institute of Computer Science, University of Silesia, 41-200 Sosnowiec, Będzińska 39, Poland

* corresponding author Tel.:+48-32-3497525 Fax: +48-32-3497515 E-mail address: julian.kubisztal@us.edu.pl

Abstract

The paper refers to examination of corrosion resistance improvement of aluminium based material subjected to a sealing procedure. The tests were carried out for non-sealed and sealed anodic coatings using both scanning microscopy and electrochemical techniques. The correlation between electrochemical parameters (i.e. corrosion potential (E_{corr}), corrosion current density (j_{corr})) and contact potential difference (*CPD*) was examined. It was found that in the first approximation j_{corr} as well as E_{corr} change linearly with CPD_{av} (average *CPD*). It was shown also, that a decrease of j_{corr} and an increase of CPD_{av} caused by anodic oxidation can be explained by an increase in oxide thickness. Further increase in CPD_{av} observed for sealed coatings is related to a decrease of root mean square roughness and/or disappearance of surface anisotropy.

Keywords

corrosion resistance; anodic coatings; contact potential difference; scanning microscopy; surface roughness; surface anisotropy;

Download English Version:

https://daneshyari.com/en/article/8023466

Download Persian Version:

https://daneshyari.com/article/8023466

Daneshyari.com