Accepted Manuscript

Laser surface hardening of 11% Cr ferritic stainless steel and its sensitisation behaviour

J. Sundqvist, T. Manninen, H.-P. Heikkinen, S. Anttila, A.F.H. Kaplan

PII: S0257-8972(18)30356-6

DOI: doi:10.1016/j.surfcoat.2018.04.002

Reference: SCT 23286

To appear in: Surface & Coatings Technology

Received date: 26 January 2018
Revised date: 29 March 2018
Accepted date: 1 April 2018

Please cite this article as: J. Sundqvist, T. Manninen, H.-P. Heikkinen, S. Anttila, A.F.H. Kaplan, Laser surface hardening of 11% Cr ferritic stainless steel and its sensitisation behaviour. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Sct(2017), doi:10.1016/j.surfcoat.2018.04.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Sundqvist et al.

Title: Laser surface hardening of 11% Cr ferritic stainless steel and its sensitisation behaviour

Authors: J. Sundqvist^a*, T. Manninen^b, H.-P. Heikkinen^b, S. Anttila^c, A. F. H. Kaplan^a

^a Dept. of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87

Luleå, Sweden

^bOutokumpu Stainless Oy, Tornio, Finland

^c Materials and Production Engineering, University of Oulu, Oulu, Finland

*Corresponding author: jesper.sundqvist@ltu.se

Abstract: 11% Cr ferritic stainless steel conforming to EN 1.4003 standard was surface

hardened by a continuous-wave fibre laser beam. Both single-pass and multi-pass laser

hardening was investigated. Different laser parameters were compared and their influence on

hardness, microstructure, geometry of the hardened zone and sensitisation was investigated,

especially for overlapping passes. The experiments showed that a surface hardness which is

double that of the base material hardness was obtainable via martensitic phase transformation

and high cooling rate, in spite of the low carbon and nitrogen content. This behaviour could

be predicted from the chemical composition using the Kaltenhauser Ferrite Factor. Hardening

at higher power levels gives more coarse-grained lath martensite but does not increase the

hardness. Sensitisation was not a problem in single-pass hardening. However, the production

of overlapping tracks could be detrimental to corrosion resistance in 11% Cr steel due to the

formation of chromium carbides and nitrides.

Keywords: laser surface hardening, ferritic stainless steel, sensitisation

Download English Version:

https://daneshyari.com/en/article/8023896

Download Persian Version:

https://daneshyari.com/article/8023896

<u>Daneshyari.com</u>