Accepted Manuscript

Improving the high temperature abrasion resistance of thermally sprayed Cr_3C_2 -NiCr coatings by WC addition

Leo Janka, Lutz-Michael Berger, Jonas Norpoth, Richard Trache, Sven Thiele, Christian Tomastik, Ville Matikainen, Petri Vuoristo

PII: S0257-8972(18)30043-4

DOI: doi:10.1016/j.surfcoat.2018.01.035

Reference: SCT 23018

To appear in: Surface & Coatings Technology

Received date: 12 October 2017 Revised date: 9 January 2018 Accepted date: 11 January 2018

Please cite this article as: Leo Janka, Lutz-Michael Berger, Jonas Norpoth, Richard Trache, Sven Thiele, Christian Tomastik, Ville Matikainen, Petri Vuoristo, Improving the high temperature abrasion resistance of thermally sprayed Cr₃C₂-NiCr coatings by WC addition, *Surface & Coatings Technology* (2018), doi:10.1016/j.surfcoat.2018.01.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUS

Improving the high temperature abrasion resistance of thermally sprayed Cr₃C₂-NiCr coatings by WC addition

Leo Janka^{a,b,*}, Lutz-Michael Berger (0000-0002-6446-6745)^d, Jonas Norpoth^a, Richard Trache (0000-0002-3837-7538)^{c,e}, Sven Thiele (0000-0001-7332-7985)^d, Christian Tomastik^a, Ville Matikainen^b, Petri Vuoristo^b

^aAC2T research GmbH, Viktor Kaplan-Str. 2 C, A-2700 Wiener Neustadt, Austria ^bLaboratory of Materials Science, Tampere University of Technology, Korkeakoulunkatu 6, FI-33101 Tampere, Finland

^cFraunhofer IWS, Fraunhofer Institute for Materials and Beam Technology, Winterbergstr. 28, D-01277 Dresden, Germany ^dFraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, Winterbergstr. 28, D-01277, Dresden, Germany ^e Treibacher Industrie AG, R&D Thermal Spray, Althofen, Austria

Abstract

Two experimental agglomerated and sintered (a&s) feedstock powders were prepared, in order to reveal the role of WC addition on the microstructure, hardness, and the abrasion resistance of HVOF-sprayed Cr₃C₂-NiCr coatings. These powders contained 10 wt.% of sub-micron WC, 20 or 10 wt.% of nickel binder, and Cr₃C₂ as balance. Experimental coatings were deposited by a liquid fueled high velocity oxygen-fuel (HVOF) spray process and subsequently heat treated at 800 °C for 8h to simulate elevated temperature service conditions. The microstructures of the powders and coatings were studied by SEM and X-ray diffraction, and the hardnesses of coatings were probed by means of micro and nanoindentation. In addition, the high stress abrasion resistance was tested in a temperature range from room temperature up to 800 °C. The microstructural characterization of the coatings displayed the presence of WC and tungsten containing Cr₃C₂ grains. The

*Corresponding author Phone: +43 2622 81600 156

Fax: +43 2622 81600 99

Email address: leo.janka@ac2t.at (Leo Janka)

Download English Version:

https://daneshyari.com/en/article/8024308

Download Persian Version:

https://daneshyari.com/article/8024308

Daneshyari.com