Accepted Manuscript

Tightly adhering diamond-like carbon films on copper substrates by oxygen pre-implantation

S. Flege, R. Hatada, T. Vogel, E. Bruder, M. Major, W. Ensinger, K. Baba

PII: S0257-8972(17)31246-X

DOI: doi:10.1016/j.surfcoat.2017.12.029

Reference: SCT 22947

To appear in: Surface & Coatings Technology

Received date: 15 September 2017 Revised date: 17 November 2017 Accepted date: 11 December 2017

Please cite this article as: S. Flege, R. Hatada, T. Vogel, E. Bruder, M. Major, W. Ensinger, K. Baba, Tightly adhering diamond-like carbon films on copper substrates by oxygen pre-implantation. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Sct(2017), doi:10.1016/j.surfcoat.2017.12.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Tightly adhering diamond-like carbon films on copper substrates by oxygen pre-

implantation

S. Flege^{1*}, R. Hatada¹, T. Vogel¹, E. Bruder¹, M. Major¹, W. Ensinger¹, K. Baba^{2,3}

¹Technische Universität Darmstadt, Materials Science, Darmstadt, Germany

²Nagasaki University, Graduate School of Engineering, Nagasaki 852-8521, Japan

³Industrial Technology Center of Nagasaki, Applied Technology Division, Omura, Japan

Copper is one of the substrates that are difficult to coat with a diamond-like carbon film

because of the latter's poor adhesion. Two factors that can improve the adhesion in this case

are the surface roughness and the oxidation of the surface. The dependence of the adhesive

strength of the diamond-like carbon film on both factors was measured for samples that were

prepared by a plasma process using a pulsed voltage. The main parameter was the ion energy

of the oxygen ions. For pulse voltages higher than -16 kV a drastically increased adhesion

was found, correlated to a rough surface and the presence of Cu₂O in the interface. The

adhesive strength of the film surpasses the maximum amount that can be measured with a pull

test. The same good adhesion can be realized at lower voltages by changing the plasma gas to

a mixture of oxygen and argon. The additional argon changes the surface topography of a

polycrystalline copper substrate.

Keywords: diamond-like carbon, oxidation, implantation, copper, adhesion

1. Introduction

flege@ma.tu-darmstadt.de, Phone: +49 6151 1621990, Fax: +49 6151 1621991

1

Download English Version:

https://daneshyari.com/en/article/8024384

Download Persian Version:

https://daneshyari.com/article/8024384

<u>Daneshyari.com</u>