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a b s t r a c t

This work describes a simple method for generating signals conforming to a stationary random process
for which the practitioner specifies both the power spectral density function and themarginal probability
density function. The general approach is to first create a Gaussian random process with the appropriate
spectral density and then apply a memoryless nonlinear transformation to achieve the desired marginal
density. The transformation is not specified a priori but rather is simulated via an iterative ‘‘shuffling’’
procedure. Themethod is very simple to implement and yields results that are comparable to some of the
more complicated methods.
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1. Introduction

Random vibration problems often require simulating the
response of a system to inputs that are oftenmodeled as stationary
random processes. Examples might include the response of a ship
hull to wave loading, the vibrational response of an airfoil to gust
loading, or even a building response to wind excitation. In these
cases we cannot write down a set of equations that will exactly
describe the loading a structure will be subject to, rather it is more
appropriate to use probabilistic models and think of what a typical
loading history might look like. Probabilistic models for sequences
of observations (signals) are referred to as random processmodels.
In order to simulate the response of a structure to a particular
random process one first has to generate a realization of that
randomprocess. Thiswork presents an approach for generating the
output of a random process with a prescribed probability density
function (PDF) and power spectral density function (PSD).
Here we define a stationary random process to be one that

results in a sequence of observations x(t1), x(t2), . . . , x(tN) for
which the joint probability distribution p(x(t1), x(t2), . . . , x(tN))
is invariant to temporal shifts i.e. p(x(t1), x(t2), . . . , x(tN)) =
p(x(t1 + τ), x(t2 + τ), . . . , x(tN + τ)). Typically, however, when
we talk about a random process we do not specify the entire
joint distribution. Rather we often describe a random process
in terms of (1) the marginal distribution associated with each
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observation, p(x) ≡ p(x(t1)) = p(x(t2)) = · · · p(x(tN)), and
(2) the auto-covariance function Rxx(τ ) = E

[
x̃(t)x̃(t + τ)

]
where

x̃(t) = x(t) − E[x(t)]. These two quantities are perhaps the
most commonly used descriptors of a random process. It is also
useful to note that for a stationary random process the auto-
covariance function and power spectral density (PSD) function,
to be denoted as Sxx(ω), are related by Fourier transform via the
Wiener–Khintchine relation (assuming the Fourier transform of
Rxx(τ ) exists, a sufficient condition being that

∫
∞

−∞
|Rxx(τ )|dτ <

∞). Thus specifying the auto-covariance function is the same as
specifying the PSD. In engineering applications it is more common
for a random process to be described by Sxx(ω).
Thisworkwill consider the problemof generating a sequence of

observations with a specific p(x) and Sxx(ω) only. Other quantities,
e.g. Rxxx(τ1, τ2) = E[x̃(t)x̃(t + τ1)x̃(t + τ2)] (equivalently, the bis-
pectrum) are typically not specified when describing random pro-
cesses and are often implicitly assumed to be negligible. This may
ormaynot be a good assumption. Anumber of researchers have de-
tected the presence of significant third-order correlations in a va-
riety of random processes. For example, Richardson and Hodgkiss
found clear evidence of higher-order correlations in underwater
acoustic data. Kim and Powers [1] detected the presence of third-
order correlations in plasma density fluctuations [1] as did Hajj
et al. [2] in fluid flow. Gurley et al. found evidence of higher-order
correlations inwave height data and, in fact, proposed an approach
for generating time-series consistent with such correlations [3].
The question of whether or not p(x) and Sxx(ω) are sufficient de-
scriptors of a random process is not discussed here.
The goal of thiswork is to provide the practitionerwith a simple,

but accurate means of generating a sequence of observations

0266-8920/$ – see front matter. Published by Elsevier Ltd
doi:10.1016/j.probengmech.2010.01.005

http://www.elsevier.com/locate/probengmech
http://www.elsevier.com/locate/probengmech
mailto:jonathan.nichols@nrl.navy.mil
http://dx.doi.org/10.1016/j.probengmech.2010.01.005


316 J.M. Nichols et al. / Probabilistic Engineering Mechanics 25 (2010) 315–322

with specified p(x) and Sxx(ω). This is accomplished by first
generating a stationary sequence of random variables conforming
to p(x) and then iteratively ‘‘shuffling’’ these values to provide
the correct spectral coloring (i.e., match Sxx(ω)). In the event that
samples conforming to p(x) are not readily available, we also
provide a simplemethod for ‘‘rejection sampling’’ from the desired
distribution. The end result is a very simple approach that works
even in situations where certain other approaches (to be discussed
in Section 2) have difficulty. Code for the proposed algorithms is
also provided.

2. Review of previous work and some basic concepts

The problem of how to generate observations x(n), n = 0 · · ·
N − 1 with a given PDF and auto-covariance (or PSD) has
been tackled by a number of researchers. While the details vary
considerably, all approaches tend to follow the same general
prescription. This procedure is illustrated schematically in Fig. 1.
First, a spectrally white, Gaussian distributed sequence is linearly
filtered in order to produce a signal with the proper auto-
covariance (equivalently PSD). This step makes use of the fact
that if the input to a linear filter is Gaussian distributed, so too
will be the output. The job of the filter is to impose the correct
spectral coloring on the output signal. The data are then subject
to a zero memory, nonlinear (ZMNL) transformation in order to
produce a signal with the appropriate non-Gaussian PDF. The
requirement of a memoryless transformation ensures that the
spectral properties of the signal generated in the first step will
not be significantly altered. Gujar and Kavanagh [4] based their
linear filtering operation on the desired (target) PSD function (as
will be done in this work). The nonlinear transformation they used
was obtained by expanding the filtered signals’ autocorrelation
function as a power series using Hermite polynomials (this is
possible because of the Gaussian PDF of the input [5]). This same
general scheme was applied by Liu and Munson [6] but with a
much more detailed analysis of the method.
Following this approach the ZMNL function, denoted g(·), is

given by

g(·) = F−1Fy(·)

where Fy is the Gaussian cumulative distribution function (CDF)
and F is the desired (target) CDF. The ZMNL function g(·) is ex-
panded in terms of Hermite polynomials, which enables the auto-
correlation of the ZMNL output to be written as a power series of
the autocorrelation of y(n). One then solves for the autocorrelation
associated with y(n)whichmakes the output of the ZMNL best ap-
proximate the desired autocorrelation, and then designs the linear
filter to approximate this autocorrelation arbitrarily closely. The
main problem with this method is that F is sometimes not invert-
ible analytically (e.g. the Gamma and Beta CDFs), and finding F−1
numerically reduces the simplicity and accuracy of the method.
In response to this, Filho and Yacoub [7] proposed an approach
that used a combination of the Hermite polynomials (for generat-
ing the proper autocorrelation) followed by a rank-reordering step
for transforming the PDF to the desired non-Gaussian target. This
rank-reordering or ‘‘shuffling’’ procedure attempts to approximate
the influence of g(·) and has the distinct advantage of not requiring
an analytical expression for the static, nonlinear transformation. A
similar approach to approximating this function was tried earlier
by Hunter and Kearney [8] and dubbed ‘‘Stochastic Minimization’’.
In the context of structural dynamics there are numerous pa-

pers on the topic of colored noise generation. A recent review of
many of these techniques has been provided by Bocchini and De-
odatis [9]. The foundations for generating a signal with a marginal
Gaussian distribution but with a prescribed power spectral den-
sity function were given by Shinozuka and Jan [10]. This approach

simply involves converting the PSD to the associated Fourier am-
plitudes, scaling, and applying the real inverse Fourier transform
(the linear filtering step in Fig. 1. By the central limit theorem the
resulting signal will be normally distributed. It is the second step,
finding the appropriate transformation for altering the PDF that is
the main source of difficulty. Yamazaki and Shinozuka [11] pro-
posed what appears to be the core algorithm for matching both
spectral properties and themarginal distribution. Themethod iter-
atively adjusts the original Gaussian distributed signal (generated
using themethod of [10]) to have the correct PDF and then corrects
for the changes this operation caused to the PSD. This same general
scheme has been improved upon with works by Deodatis and Mi-
caletti [12], Shi and Deodatis [13], and Bocchini and Deodatis [9].
Again, the goal is to approximate the influence of the unknown g(·)
without adversely influencing the PSD. The work of Grigoriu [14]
considers a similar strategy anduses the term ‘‘translation process’’
to describe the ZMNL function.
We should also point out that solutions to the colored noise

generation problem bear close resemblance to the generation of
so-called ‘‘surrogate sets’’, frequently used in the physics commu-
nity for determining whether or not an observed signal is consis-
tent with a linear random process [15]. The goal of most surrogate
algorithms is to produce a new (surrogate) signal with the same
PSD and marginal PDF as the original data. Surrogate algorithms
are therefore excellent candidates for our problem.
In this work the linear filter is created using a well-known ap-

proach using the Fourier amplitudes associated with the target
power spectral density. The static nonlinearity is approximated us-
ing a rank-reordering procedure— similar in spirit to that proposed
in [7], but modified in accordance with the aforementioned sur-
rogate generation methods. The iterative portion of our algorithm
is, in fact, identical to that put forward by Schreiber [16]. The al-
gorithm does require the practitioner to draw samples from the
desired PDF. For complicated PDFs this may not be accomplished
by standard methods. For this reason we also briefly discuss the
concept of rejection sampling and provide a simple algorithm for
generating iid random sequences for any given probability distri-
bution.

3. Iterative Fourier transformmethod

Assume that we wish to create a sequence of observations
x(n) n = 0, . . . ,N − 1 with probability density function p(x)
and a two-sided power spectral density Sxx(ω). The first step is to
sample the desired PSD function at N discrete frequencies ωk =
(k− N/2)∆ω, k = 0, . . . ,N − 1 giving Sxx(ωk). The frequency bin
width is dictated by the desired temporal sampling interval∆t . The
two are related via ∆ω = 2π/N∆t and, as usual, ∆t should be
chosen in accordance with the Nyquist criterion for the maximum
resolvable frequency.We also define the discrete Fourier transform

X(k) = FT(x(n)) ≡
N−1∑
n=0

x(n)e−i2πkn/N (1)

and inverse Fourier transform

x(n) = FT−1(X(k)) ≡
1
N

N−1∑
k=0

X(k)ei2πkn/N . (2)

Before proceeding, it should be mentioned that p(x) and Sxx(ω)
cannot be specified independently as they are linked through the
signal mean x̄ and variance σ 2x . For the signal mean we have the
relationship

X(0)
N
=
1
N

N−1∑
n=0

x(n) = x̄ (3)
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