Accepted Manuscript

Adhesion Enhancement of DLC on CoCrMo Alloy by Diamond and Nitrogen Incorporation for Wear Resistant Applications

J. Corona-Gomez, S. Shiri, M. Mohammadtaheri, Q. Yang

PII: S0257-8972(17)31091-5

DOI: doi:10.1016/j.surfcoat.2017.10.050

Reference: SCT 22815

To appear in: Surface & Coatings Technology

Received date: 25 March 2017 Revised date: 7 September 2017 Accepted date: 12 October 2017

Please cite this article as: J. Corona-Gomez, S. Shiri, M. Mohammadtaheri, Q. Yang, Adhesion Enhancement of DLC on CoCrMo Alloy by Diamond and Nitrogen Incorporation for Wear Resistant Applications, *Surface & Coatings Technology* (2017), doi:10.1016/j.surfcoat.2017.10.050

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Adhesion Enhancement of DLC on CoCrMo Alloy by Diamond and Nitrogen Incorporation for Wear Resistant Applications.

J. Corona-Gomez, S. Shiri, M. Mohammadtaheri, Q. Yang*

Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7H 5A9, Canada.

Abstract:

Diamond like carbon (DLC) coating is promising to increase the service lifetime of hip joints made of CoCrMo alloy. However, the weak adhesion of DLC on the alloy presents problems for this application. This work aims to improve the adhesion of DLC on CoCrMo alloy with nitrogen doping and diamond incorporation. Microcrystalline diamond particles were synthesized on CoCrMo alloy sheets by Microwave Plasma Enhanced Chemical Vapor Deposition and nitrogen doped DLC thin films were then deposited on them by Inductively Coupled Plasma assisted Chemical Vapor Deposition. The effect of nitrogen doping and diamond incorporation on the film adhesion was investigated by Rockwell C indentation. The results show that nitrogen doping and diamond incorporation can improve the film adhesion significantly. Ball-on-disc friction and wear testing results reveal that the friction coefficient and wear rate between polyethylene balls and DLC (doped with nitrogen) coated CoCrMo decreases with the increase of nitrogen content in the coatings. Those results have demonstrated that the modified DLC films are promising for total hip joint replacement application.

Download English Version:

https://daneshyari.com/en/article/8024717

Download Persian Version:

https://daneshyari.com/article/8024717

Daneshyari.com