Accepted Manuscript

Local corrosion behavior and model of micro-arc oxidation HA coating on AZ31 magnesium alloy

Huijuan Ma, Yanhong Gu, Shujing Liu, Juntie Che, Dawei Yang

PII: S0257-8972(17)31094-0

DOI: doi:10.1016/j.surfcoat.2017.10.053

Reference: SCT 22818

To appear in: Surface & Coatings Technology

Received date: 28 July 2017
Revised date: 14 October 2017
Accepted date: 16 October 2017

Please cite this article as: Huijuan Ma, Yanhong Gu, Shujing Liu, Juntie Che, Dawei Yang, Local corrosion behavior and model of micro-arc oxidation HA coating on AZ31 magnesium alloy. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Sct(2017), doi:10.1016/j.surfcoat.2017.10.053

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Local Corrosion Behavior and Model of Micro-arc Oxidation HA Coating on AZ31 Magnesium Alloy

Huijuan Ma^{1,2}, Yanhong Gu^{1,2*}, Shujing Liu¹, Juntie Che¹, Dawei Yang³*

¹School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, 19

QingyuanBeilu, Huangcun, Daxing District, Beijing 102617, China

²Department of Civil Engineering and Engineering Mechanics, Columbia University in the City of New York, 500 W. 120th St., 620 Mudd, New York, NY 10027

³Department of orthopedics, South area of Guang'anmen hospital, 138 Xingfeng North Street,

Huangcun, Daxing District, Beijing 102618, China

*Address correspondence to

Yanhong Gu, guyanhong@bipt.edu.cn,

Tel:+86-13691085981(C),+8610-81292290(O), Fax:+8610-81292290;

Dawei Yang, yangdawei51@126.com, Tel:+86-18911945288

Abstract: In order to investigate the effect of the defects on the corrosion behavior of micro-arc oxidation (MAO) HA coating on magnesium alloy, scanning electrochemical microscopy (SECM) and local electrochemical impedance spectroscopy (LEIS) were applied for determining local corrosion mechanism. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were applied to observe the microstructure and the composition of the samples before and after corrosion. XRD shows that Ca₁₀(PO₄)₆(OH)₂ (HA) was detected in the MAO HA coating, Adhesion strength test shows the critical load of the MAO HA coating was about 4.08N. It can be found that from the SECM and the LEIS measurement, with the increase of immersion time, the corrosion of the MAO HA coating with artificial scratch is accelerated initially and gradually expanded from the scratch to the coating, and then the corrosion products prevent the scratch from further destroying. A physical model for the local corrosion due to defects (artificial scratches) of MAO coated AZ31Mg alloy was proposed.

Download English Version:

https://daneshyari.com/en/article/8024755

Download Persian Version:

https://daneshyari.com/article/8024755

Daneshyari.com