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a b s t r a c t

This work analyzes the statistical properties of nanobeam deflections due to stochastic surface stresses,
induced by the surface adsorption/desorption of surrounding particles. A mechanical model for a
heterogeneous nanobeam is first introduced. The model considers combined axial forces and bending
moments due to non-uniform surface effects. Then, local surface interactions are statistically derived from
the Langmuir interaction model and their corresponding stochastic surface stresses are introduced. Two
types of nanobeam sensor are studied: a cantilever beamwith pure surface bending effect and a clamped
beam with mixed surface force and bending moment effects. The advantages of each type are discussed.
The deflection statistics are found analytically and validated by Monte Carlo simulations. An analytical
relation between the adsorption/desorption rates and the maximum deflection variance is found.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Microscopic sensors based on deflections of small-scale beams
have been developing extensively in recent years. One of their
clear advantages is their capability of actuation by surface residual
stresses, achieving in situ passive sensing and real-time response.
Surface effects in beams are significant below the microscale.

They are introduced by residual stresses and near-surface varia-
tions of the elastic modulus [1]. The latter, however, is negligible
for sufficiently thick elements [2]. Mechanical modeling of these
effects was initiated by Gurtin and Murdoch [3], who formulated
the continuum equations and constitutive laws for elastic materi-
als with surface effects. Based on their work, a variety of studies on
homogeneous beams and plates were conducted [2,4,5]. Residual
stresses of 1D beam models appear on the upper and lower sur-
faces only. Each surface induces both an axial force and a bending
moment on the beam cross section. In axially determinate beams
(e.g. cantilever beams) the two effects can be treated separately,
while in indeterminate cases (e.g. clamped beams) they are cou-
pled. To our knowledge, only non-coupled cases have been studied
so far.
Local variations of surface residual stresses can appear due to

interactions with surrounding elements. A variety of interactions
are possible: bonding [6,7], partial bonding [8], surface dissoci-
ation [9] and surface swelling/collapse [10–12]. Interactions are
achieved by coating the surface with a specific receptor layer (sur-
face functionalization).
Surface stress variations cause a spontaneous beam deflection,

which was originally used to measure the evolution of surface
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stresses [13] and later for the actuation of small-scale detec-
tors [14]. These sensors are suitable for detecting a variety of chem-
ical and biological elements such as explosives, pH, DNA, viruses,
humidity and more [6,9,15].
In this work we consider the simple but fundamental Langmuir

adsorption model, in which interactions occur in specific, immo-
bilized and uncorrelated surface sites [16]. This model is valid for
particle adsorption as well as for self-assembly of monolayers on
solid surfaces [17,18] and can be used as an initial approxima-
tion for more complicated mechanisms. The model predicts the
amount of interacting sites without considering their specific lo-
cations. Previous studies considered deterministic, uniformly dis-
tributed surface stresses, which are proportional to the amount of
interacting surface sites. This approach, however, is limited since
surface sites are uncorrelated and statistically distributed, leading
to non-homogeneous surface stresses.
Microbeam actuators are widely used nowadays. Approaching

the nanoscale, surface stochastic heterogeneity is emphasized
and a modified analysis is needed. In this work, a mechanical
model of a beam with surface heterogeneity is formulated.
Inertial effects can be neglected in a typical interaction process
(∼1 kHz) [17]. Stochastic effects are estimated analytically by
a modified Functional Perturbation Method (FPM) [19,20]. Two
nanobeam types are examined: cantilever beamswith pure surface
bending moment and clamped beams with mixed surface axial
force and bending moment. The latter type is less common but
its advantages will be demonstrated. Finally, the unique detection
benefits of such nanoscale beams are discussed.

2. Mechanical model

In this section the governing equations for nano-Bernoulli
beams [2,4,5] are generalized to the case of non-uniform surfaces
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Fig. 1. Schematic description of centerline displacements in a 1D beam.

stresses. Consider a beam with length L, height h and breadth
b, associated with the in-plane coordinate system

(
x̂, ŷ
)
and

centerline displacements
(
û, ŵ

)
, as shown in Fig. 1.

Under Euler–Bernoulli assumptions, the beam displacement
field

(
ũ, w̃

)
refers to the centerline displacements

(
û, ŵ

)
through

ũ = û− ŷ
dŵ
dx̂

(1)

w̃ = ŵ. (2)

For slender beams exhibiting small displacements, the axial strain
(ε) is

ε =
dũ
dx̂
=
dû
dx̂
− ŷ
d2ŵ
dx̂2

. (3)

In small-scale beams, the cross section is associated with three
normal stress components [4]: the bulk stress σ and two surface
residual stresses τ+δ

(
ŷ− h

2

)
and τ−δ

(
ŷ+ h

2

)
. δ is a Dirac

operator; see the Appendix for further notations. Considering
linear elastic materials, σ refers to ε through Young’s modulus E:

σ = Eε. (4)

Under a quasi-static approximation (inertial effects are neglected),
force andmoment equilibrium on a beam segment associatedwith
first Taylor approximation yields (Fig. 2)

b
d
dx̂

(
τ+ + τ−

)
−

∫
dσ
dx̂
bdŷ = 0 (5)∫

dσ
dx̂
bŷdŷ+ b

h
2
d
dx̂

(
τ− − τ+

)
−
dŵ
dx̂

[
b
(
τ+ + τ−

)
−

∫
σbdy

]
= 0. (6)

Eqs. (5)–(6) are reduced to the elementary linear beam equations
for τ+, τ− = 0. Introducing normalized parameters x = x̂

L ,
u = û

L and w =
ŵ
L , substituting Eq. (3) into Eq. (4) and then into

Eqs. (5)–(6), yields (after some algebra)

d
dx

[
fs − a

du
dx

]
= 0 (7)

k
d4w
dx4
+
d
dx

{
dw
dx

[
fs − a

du
dx

]}
=
d2ms
dx2
; (8)

a, k, fs and ms are the cross section axial and bending stiffness,
surface force and moment, respectively. In this work a and k are
considered constants, while fs andms are generally non-uniform.

a = Ehb (9)

k = E
hb
12

(
h
L

)2
(10)

Fig. 2. Free body diagram on a nanobeam segment.

fs = b
(
τ+ + τ−

)
(11)

ms =
1
L
h
2
b
(
τ− − τ+

)
. (12)

Eqs. (7) and (8) govern the centerline displacement field (u, w) for
beams without external mechanical loading.
Simplification can be achieved as follows: denote λ2 as the total

cross-sectional force,

λ2 = fs − a
du
dx
. (13)

Following Eq. (7), λ2 is constant and therefore is determined by
the axial boundary conditions. Two axial boundary conditions are
admissible: fixed edge force (F) or displacements (u0 and u1 for
x = 0, 1, respectively). Positive values correspond to the positive x
direction. For fixed edge force λ2 = −F , where for predetermined
edge displacements λ2 is found from integration of Eq. (13), i.e.,

λ2 =


−F fixed force∫ 1

0
fsdx+ a (u0 − u1) fixed displacement.

(14)

Substituting λ2 from Eq. (13) into Eq. (8) yields the reduced
deflection equation:

k
d4w
dx4
+ λ2

d2w
dx2
=
d2ms
dx2

. (15)

The four possible boundary conditions for deflection, slope,
moment and force, respectively (no external loads), are

w = 0;
dw
dx
= 0; k

d2w
dx2
= ms;

k
d3w
dx3
+ λ2

dw
dx
=
dms
dx
. (16)

Eqs. (14)–(15) are the deflection governing equations for beams
with non-uniform surface effects. For uniform surface stresses, the
right-hand side of Eq. (15) vanishes, and Eq. (14)b is reduced to
λ2 = fs + a (u0 − u1). When the surface stresses are completely
omitted (τ+, τ− = 0), Eqs. (14)–(15) reduce to the familiar form
of the homogeneous case [21].
The present model unifies and generalizes two previous

models for pure bending in homogeneous clamped–free beams(
ms = const, λ2 = 0

)
[2,4] and mixed bending (including axial

force) in symmetric homogeneous axially fixed beams (ms =
0, λ2 = const) [5].
Two cases are solved here: a cantilever beam in which λ2 =

0 and the right-hand side of Eq. (15) is a stochastic function,
representing ‘‘pseudo’’ loading due to surface inhomogeneities,
and a clamped–clamped beam which includes also λ2 as a
stochastic functional of the surface heterogeneity.
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