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a b s t r a c t

The paper presents a self-contained and didactic approach to the stochastic collocation method. The
method relies on the Lagrange polynomials and the Gauss quadrature rule. It is presented for large classes
of mechanical problems, i.e. static problems, dynamic problems and spectral problems. After a general
presentation of each of them, examples and results are provided. Numerical results show the high rate of
convergence of the proposed method.
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1. Introduction

The behaviour of most mechanical systems may be described
by a vector equationwhose nature (algebraic equation, differential
equation, . . . ) depends on the underlying mechanical problem to
treat. Three important classes of problems can be distinguished:
those of a static nature, those of a dynamic nature and those of a
spectral nature. Numerical methods to treat these problems (Finite
Elements Method, Discrete Elements Method, Spectral Elements
Method, . . . ) have now reached some degree of maturity to give
accurate solutions through the adaptivity associated with efficient
error estimators. However, the parameters of these equations are
usually derived from experimental data and therefore are soiled by
uncertainties. To accurately predict the behaviour of such systems,
it becomes essential to take into account these uncertainties
through a suitable probabilistic modelling. Numerical techniques
are then required to quantify their probabilistic effects on the
mechanical response.
These techniques may be classified in two major groups:

sampling procedures, and non-sampling procedures. The best
known sampling procedure is the Monte-Carlo method, or some
of its refinements [1]. It consists in generating a large number of
realisations of the random parameters from which a deterministic
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code gives the corresponding realisations of the random response
of the system. These realisations are then statistically treated
in order to estimate a few moments of the response. The main
drawback of this approach is its slow rate of convergence. For
example, the mean value typically converges as 1/

√
N , where N

is the number of realisations.
Moment, perturbation and spectral finite element stochastic

methods [2] belong to non-sampling methods. Although they
exhibit better rates of convergence than Monte-Carlo simulations,
they present limitations that have prevented them from being
widely used. In particular, most of them have an intrusive
character that complicates their implementation on computers.
Moreover, thesemethods aremostly efficient when the embedded
mechanical model is mechanically linear. Furthermore, for the
moment or perturbation methods, there is a high computational
cost when the mechanical system exhibits a high degree of
variability. The spectral stochastic finite element stochastic [3]
method takes into account the random fields through truncated
functional expansions using a finite number (generally small) of
r.v.’s. This method has been applied with great success [4] and
convergence studies [5]—both theoretical and numerical—have
shown that it exhibits a fast convergence rate with increasing
orders of expansion. For an extensive review, the reader might
refer to [6].
In this paper, we do a self-contained presentation of a stochas-

tic finite element method based on a stochastic collocation proce-
dure [7]. Whereas the spectral element method uses orthogonal
polynomials, the main feature of the proposed method lies in the
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use of non-orthogonal Lagrange polynomials to approximate the
nonlinear stochastic response, after having rewritten the problem
in an appropriate Gaussian context. Moreover, it combines the fast
convergence of theGalerkinmethodswith the non intrusive nature
of the Monte-Carlo methods. The presentation has been conceived
in a didactic spirit, with a view to showing the practical interest
of the stochastic collocation method in randommechanics. That is
why the technical aspects of this method have been emphasised
over the mathematical aspects.
This paper is organised as follow: in the next section, we specify

the classes of problems and the associated hypotheses for which
the proposedmethod applies andwe give typical examples of each
class. Then, we present the general ideas used in the stochastic
collocation method and we detail the application of the proposed
method in the cases of static, dynamic and spectral problems.
Section 4 illustrate the stochastic collocation method on some
academic examples forwhich reference solutions exist (one of each
class) followed by an engineering example. Finally, in Section 5 we
draw the conclusions.

2. Classes of considered problems, associated hypotheses and
typical examples

2.1. Classes of the considered problems

In this paper, we consider three classes of problems for which
the stochastic collocation method is particularly well suited:

• Class 1: Static problems.
Estimate the first few moments, and notably the mean mY =
E[Y] and the correlationRY = E[YYT ], of theRd-valued random
variable (r.v.) Y = (Y1, . . . , Yd)T , such that

Y = f(X), (1)

where X = (X1, . . . , Xp)T is aRp-valued r.v. with known proba-
bility distribution, f is a given nonlinear deterministic function
from Rp into Rd, p and d are two integers ≥1, and E[·] is the
mathematical expectation.
• Class 2: Dynamic problems.
Estimate the first few moments, and in particular the mean
functionmZ(t) = E[Z(t)], t ∈ R+, and the correlation function
RZ(s, t) = E[Z(s)ZT (t)], (s, t) ∈ R+ × R+, of the Rd-valued
stochastic process Z = (Z(t) = (Z1(t), . . . , Zd(t))T , t ∈ R+),
such that, ∀t ∈ R+

Z(t) = g(Q(t)), (2)

where g is a given deterministic function from Rl into Rd and
Q = (Q(t) = (Q1(t), . . . ,Ql(t))T , t ∈ R+) is a Rl-valued
stochastic process governed by the second order differential
equation{
Q̈(t)+ h(Q(t), Q̇(t), ξ(t), t,V) = 0, t > 0(
QT (0), Q̇T (0)

)T
= H0(20) a.s.,

(3)

where t ∈ R+ is the time, Q̈ and Q̇ are respectively the first and
the second derivatives ofQwith respect to t ,V = (V1, . . . , Vm)T
is a Rm-valued r.v. H0 is a given regular deterministic function
from R2l into R2l,20 = (Θ01, . . . ,Θ02l)T is a R2l-valued r.v. in-
dependent of V, ξ and h are given deterministic functions from
R+ into Rl and from Rl × Rl × Rl × R+ × Rm into Rl respec-
tively, d, l, and m are three integers ≥ 1, X = (VT ,2T0)

T is a
Rp-valued r.v. (with p = m + 2l), whose probability distribu-
tion is known, and a.s. is the abbreviation of ‘‘almost surely’’.
Note that the solution process Q can be seen as a function of X,
i.e.Q(t) = r(t,X), ∀t ∈ R+. Consequently, the process Z de-
fined by Eq. (2) can also be seen as a function of t and X:

Z(t) = G(t,X), t ∈ R+. (4)

• Class 3: Spectral problems.
Estimate the second order statistics of the modal characteris-
tics (eigenvalues, eigenvectors) of an undamped l-dimensional
discrete linear dynamic system whose mass matrixM ∈ Rl×l
and stiffness matrixK ∈ Rl×l depend on a Rp-valued r.v. X =
(X1, . . . , Xp)T with a given probability distribution.

2.2. Hypotheses

To treat the previous problems, the following hypotheses will
be assumed:
(H1) All the considered random quantities (i.e. the r.v.’s X, Y

and the stochastic processes Z and Q) are defined on the same
probability space (A,F , P), whereA is a sample space, F is a σ -
algebra of parts ofA and P is a probability measure on F .
(H2) The p-dimensional r.v. X = (X1, . . . , Xp)T follows a stan-

dard Gaussian distribution on Rp. Hence, its components X1, . . . ,
Xp are mutually independent and identically distributed according
to a standard Gaussian distribution on R. In these conditions, de-
noting by ψi the probability density function (pdf) of the compo-
nent Xi of X, such that

ψi(xi) =
1
√
2π
e−

x2i
2 , xi ∈ R, (5)

the pdf Ψ of X can be written

Ψ = ψ1 ⊗ · · · ⊗ ψp, (6)

with, ∀x = (x1, . . . , xp) ∈ Rp,

Ψ (x) = (ψ1 ⊗ · · · ⊗ ψp)(x) = ψ1(x1)× · · · × ψp(xp), (7)

where⊗ denotes the tensor product and× is the usual symbol of
multiplication in R.
(H3) The functions f, g and h are at least piecewise continuous,

a property that ensures the validity of all the mathematical and
numerical developments considered in the construction of the
proposed method.

Remark. It is important to note that the hypothesis (H2) is not a
loss of generality. Indeed, if η = (η1, . . . , ηp)T is a non-degenerate
and continuous p-dimensional r.v. with a given pdf, then it is
always possible to construct a regular transformation T, with an
inverse T−1, such that T−1(η) is a p-dimensional standard Gaussian
r.v., i.e. such that η can be written η = T(X). Several techniques
for constructing this transformation (in particular the well known
techniques of Nataf, Hermite, Winterstein and Rosenblatt) can be
found in references [8–10]. As a result, any problem expressed
in terms of η can be expressed in terms of X using such a
transformation.

2.3. Typical examples

The three classes of problems considered above represent a
significant part of the set of structural reliability problems focused
on the propagation of the uncertainties in numerical models. As an
illustration, we give a typical example of problem for each class.

2.3.1. Example of static problem
This example consists of a mechanical system whose static

linear behaviour is described by a l-degrees of freedom finite
element model with a stiffness matrixK ∈ Rl×l (assumed to be
regular), with the vector of nodal forces e ∈ Rl and with the vector
of nodal displacements u ∈ Rl. Let y ∈ Rd be some observation
of u (i.e. a vector of Rd containing stresses and/or strains and/or
particular displacements. . . ) linked to u via a continuous function
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