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a b s t r a c t

Stochastic seismic finite element analysis of a cable-stayed bridge whose material properties are de-
scribed by random fields is presented in this paper. The stochastic perturbation technique andMonte Carlo
simulation (MCS) method are used in the analyses. A summary of MCS and perturbation based stochastic
finite element dynamic analysis formulation of structural system is given. The Jindo Bridge, constructed in
South Korea, is chosen as a numerical example. The Kocaeli earthquake in 1999 is considered as a ground
motion. During the stochastic analysis, displacements and internal forces of the considered bridge are
obtained from perturbation based stochastic finite element method (SFEM) and MCS method by chang-
ing elastic modulus and mass density as random variable. The efficiency and accuracy of the proposed
SFEM algorithm are evaluated by comparison with results of MCS method. The results imply that pertur-
bation based SFEMmethod gives close results to MCS method and it can be used instead of MCS method,
especially, if computational cost is taken into consideration.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Bridgeswith very long spans have always been a great challenge
for engineers throughout history. Cable-stayed types of bridges
are becoming more and more popular in the construction of long
span bridges due to their many advantages, i.e. light in weight,
efficient in load resistance, and of smaller cross sections. Cable-
stayed bridgeswhich consist ofmain girders, towers and cables are
complicated structures. From these towers, cables stretch downdi-
agonally and support the girder. Cable-stayed bridge can be distin-
guished by the number of spans, number of towers, girder type,
number of cables and types of cables. The cable-stayed bridge can
be constructed for even longer spans, if the deck and cable stiffness
and strength to weight ratios can be improved. This could signifi-
cantly diminish the critical compressive stresses of the deck in the
tower zones, and increase the apparent stiffness of the stay-cables,
as their sag action is reduced due to a huge drop of the weight per
unit length.
The traditional structural analyses are realized according to

the assumption that geometrical and material characteristics of
structures are deterministic. However, there are some uncertain-
ties about design values. These uncertainties can be defined as
geometrical characteristics (cross-internal area, flexural inertia,
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length etc.), material characteristics (elastic modulus, Poisson’ ra-
tio, mass density etc.), and magnitudes and distributions of the
loads. The deterministic method could be disqualified for many
structural system analyses because of these uncertainties. MCS is
the most employed method among the stochastic analysis meth-
ods for structural problems. It lies on the generation of a defined
number of samples of the uncertain parameters and on the solu-
tion of the corresponding deterministic problems. However, as the
number of degrees of freedom of the structure and the number of
uncertain parameters increase, structural analyses with theMonte
Carlo become very heavy from a computational point of view, and,
in some cases, the computational effort makes them inapplica-
ble. Accordingly, some non-statistical alternative procedures have
been proposed in the literature [1–5]. On the other hand, stochas-
tic finite element method (SFEM), which is one of the probabilis-
tic analysis methods, increases its reliability day by day. Most of
them are based on perturbation techniques, so that the SFEM is of-
ten identified as the classical finite elementmethod (FEM) coupled
with a perturbation approach. This method is applied several field
in civil engineering, especially, simple or semi-complex structure
systems.
Although there is an extensive literature on deterministic

analysis of bridges [6–9], technical literature is not adequate on the
stochastic dynamic analysis of cable-stayed bridge. The dynamic
behaviors of cable-stayed bridges have been studied by several
researchers [10,11]. Linear and nonlinear static and earthquake-
response analyses of cable-stayed bridges were carried out by
many researchers [12–15] only in the past two decades.
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The SFEM algorithm for structures has been developed by sev-
eral researchers [16–20]. However, most of their work is limited to
simple structures. More complex structures such as cable-stayed
bridges are not considered. Very few researchers [21–23] studied
the stochastic finite element method with random variable mate-
rial and geometrical properties of cable-stayed bridges. Cheng and
Xiao [22] proposed a stochastic finite-element-based algorithm for
the probabilistic free vibration and flutter analysis of suspension
bridges through combination of the advantages of the response
surface method, FEM and MCS. Liu et al. [23] investigated large
flexible structures, such as suspension bridges, actually possess
stochastic material properties and these random properties un-
avoidably affect the dynamic system parameters. It is concluded
from numerical analysis of a modern suspension bridge that al-
though the second-order statistics of frequencies are small rela-
tively to the change of basic design variables, such as density of
mass and modulus of elasticity, the sensitivities of modal parame-
ters to these variables at different locations change in magnitude.
The focus of the present paper is to perform the stochastic dy-

namic analysis of a cable-stayed bridge by using the perturbation
based SFEM and MCS methods. During stochastic analysis, dis-
placements and internal forces of the systems are obtained from
perturbation based SFEM and MCS methods by using different un-
certainties of material characteristics. Elastic modulus and mass
density are chosen as random variable material properties. The
analysis results obtained from these two methods are compared
with each other.

2. Stochastic finite element method (SFEM)

In the stochastic finite element method (SFEM), the determin-
istic finite element formulation is modified using the perturba-
tion technique or the partial derivative method to incorporate
uncertainties in the structure systems. Since the basic variables are
stochastic, every quantity computed during the deterministic anal-
ysis, being a function of the basic variables, is also stochastic. There-
fore, the efficientway to arrive at the stochastic responsemay be to
keep account of the stochastic variation of the quantities at every
step of the deterministic analysis in terms of the stochastic varia-
tion of the basic variables.
A SFEM,which is based onperturbation technique, is developed.

The method developed here uses an alternate approach for
obtaining improved computational efficiency. The derivatives of
the concentrationwith respect to randomparameters are obtained
by using the derivatives of localmatrices instead of globalmatrices.
This approach increases the computational efficiency of the
present method by several orders with respect to standard SFEM.
There are two fundamental ways to solve the stochastic problem
(i) analytical approach and (ii) numerical approach. Among
analytical approaches, the perturbation method is widely used
because of its simplicity. Numerical method such as Monte Carlo
Simulation is generally applicable to all types’ stochastic problems
and is often used to verify the results obtained from analytical
methods. A detailed discussion of these methods is presented
below.

2.1. Perturbation based SFEM formulation

The perturbation method is the most widely used technique
for analyzing uncertain system. This method consists of expanding
all the random variables of an uncertain system around their
respective mean values via Taylor series and deriving analytical
expression for the variation of desired response quantities such as
natural frequencies and mode shapes of a structure due to small
variation of those random variables. The basic idea behind the
perturbation method is to express the stiffness and mass matrices
and the responses in terms of Taylor series expansion with respect
to the parameters centered at the mean values.

Since the deterministic equations are valid for theMCS analysis
as well, then the essential differences are observed in case of per-
turbation based stochastic finite element analysis. Let us consider
a deterministic equation of motion in the form of
Mq̈+ Cq̇+ Kq = Qα (1)
where K ,M, C denote the stiffnessmatrix, massmatrix and damp-
ing matrix, q̈, q̇, q denote the acceleration, velocity, displacement,
respectively. The stochastic perturbation based approach consists
usually of up to the second-order equations obtained starting from
the deterministic ones.
The basic idea of the mean based, second-order, second-

moment analysis in stochastic finite elementmoment is to expand,
via Taylor series, all the vector andmatrix stochastic field variables
typical of deterministic finite elementmethod about themean val-
ues of randomvariables (b), to retain only up to second-order terms
and to use in the analyses only the first two statistical moments.
In this way equations for the expectations and covariances of the
nodal displacements can be obtained in terms of the nodal dis-
placement derivatives with respect to the random variables.
The perturbation stochastic finite element equations describing

dynamic response of random variable system for zeroth, first and
second order:
Zeroth-order equation (ε0 terms, one system of N linear si-

multaneous ordinary differential equations for qα(b; τ), α = 1,
2, . . . ,N)
M(b)q̈(b; τ)+ C(b)q̇(b; τ)+ K(b)q(b; τ) = Qα(b; τ). (2)
First-order equations, rewritten separately for all random vari-

ables of the problem (ε1 terms, N̄ systems ofN linear simultaneous
ordinary differential equations for q,ρα (b; τ), ρ = 1, 2, . . . , N̄, α =
1, 2, . . . ,N)
M(b)q̈,ρ(b; τ)+ C(b)q̇,ρ(b; τ)+ K(b)q,ρ(b; τ) = Q ,ρα (b; τ)

−
[
M ,ρ(b)q̈0(b; τ)+ C ,ρ(b)q̇0(b; τ)+ K ,ρ(b)q0(b; τ)

]
. (3)

Second-order (ε2 terms, one system of N linear simultaneous
ordinary differential equations for q2α(b; τ), α = 1, 2, . . . ,N)

M(b)q̈(2)(b; τ)+ C(b)q̇(2)(b; τ)+ K(b)q(2)(b; τ)

=

{
Q ,ρσα (b; τ)− 2[M ,ρ(b)q̈,σ (b; τ)+ C ,ρ(b)q̇,σ (b; τ)

+ K ,ρ(b)q,σ (b; τ)] −
[
M ,ρσ (b)q̈0(b; τ)

+ C ,ρσ (b)q̇0(b; τ)+ K ,ρσ (b)q0(b; τ)
]}
Sρσb (4)

where

q(2)α (b; τ) = q
,ρσ
α (b; τ)Sρσb (5)

where b is the vector of nodal random variables, qα is the vector of
nodal displacement-type variables, τ is forward time variable, N̄ is
the number of nodal randomvariables.M, C andK are systemmass
matrix, damping matrix and system stiffness matrix, respectively.
Qα , q and S

ρσ

b are load vector, displacement and the covariance
matrix of the nodal random variable, respectively. N is the number
of degrees of freedom in the system. (.)0 is zeroth-order quantities,
taken at means of random variables, (.),ρ is first partial derivatives
with respect to nodal random variables, (.),ρσ is second partial
derivatives with respect to nodal random variables.
In Eqs. (2)–(4) the zeroth-order mass, damping and stiffness

matrices and local vector and their first and second mixed deriva-
tives with respect to nodal random variables b` are defined as fol-
lows;
Zeroth-order functions

M(b) =
∫
Ω

ϕᾱ`
0
ᾱϕiαϕiβdΩ (6)

C(b) =
∫
Ω

ϕᾱϕβ̄(ϕ
0
ᾱ`
0
β̄
ϕiαϕiβ + β

0
ᾱC
0
ijklβ̄BijαBklβ)dΩ (7)
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