Accepted Manuscript

Synthesis of porous Ce-doped titania coating containing $CaTiO_3$ by MAO and its apatite inducing ability

X. Rao, ¡!-[INS][C. L.]-¿C.L.;!-[/INS]-¿ Chu, Q. Sun

PII: S0257-8972(16)30470-4

DOI: doi: 10.1016/j.surfcoat.2016.05.077

Reference: SCT 21232

To appear in: Surface & Coatings Technology

Received date: 11 February 2016 Revised date: 27 May 2016 Accepted date: 27 May 2016

Please cite this article as: X. Rao, i.!.-[I.N.S.].[C.L.].-i.C.L.i.!.-[./.I.N.S.].-i. Chu, Q. Sun, Synthesis of porous Ce-doped titania coating containing CaTiO₃ by MAO and its apatite inducing ability, *Surface & Coatings Technology* (2016), doi: 10.1016/j.surfcoat.2016.05.077

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis of porous Ce-doped titania coating containing

CaTiO₃ by MAO and its apatite inducing ability

X. Rao, C. L. Chu*, Q. Sun

School of Materials Science and Engineering and Jiangsu Key Laboratory for Advanced

Metallic Materials, Southeast University, Nanjing, 211189, China

Abstract

Bioactive porous CaTiO₃-contained titania coatings doped with cerium were prepared

on CP-Ti surfaces by micro arc oxidation (MAO) process. The surface morphologies,

chemical composition, wettability and the phase compositions of coatings were investigated

by scanning electron microscopy (SEM), energy dispersion X-ray spectrometry (EDS),

contact angle goniometer and X-ray diffraction (XRD), respectively. The results showed the

surface phase compositions of the as-synthesized coatings are anatase, rutile TiO₂ and

perovskite CaTiO₃ phases, as well as a few amorphous phases. The participation of Ce in the

electrolyte during MAO is evidenced to benefit in crystallizing CaTiO₃ phase and enhancing

the coating surface hydrophilicity. The results of simulated body fluid (SBF) immersion

experiments indicate that the hydrolysis of CaTiO₃ during immersion could enhance the

nucleation and growth of apatite. In comparison, the porous Ce-doped titania coating

containing CaTiO₃ exhibits better bioactivity as more apatites were observed at the same

immersion duration.

Keywords: Porous titania coating; CaTiO₃; Ce-doped; Micro arc oxidation; Bioactivity

Download English Version:

https://daneshyari.com/en/article/8025186

Download Persian Version:

https://daneshyari.com/article/8025186

<u>Daneshyari.com</u>