
Probabilistic Engineering Mechanics 23 (2008) 254–266
www.elsevier.com/locate/probengmech

Joint distribution of peaks and valleys in a stochastic process
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Abstract

General expressions and numerical results are presented pertaining to the occurrence of two local extrema of a stochastic process at prescribed
time values. The extrema may be either peaks or valleys and the process may be either stationary or nonstationary. General formulas are presented
for the rates of occurrence, the joint and conditional probability distributions, and the moments of the extreme values. These formulas are relatively
simple multiple-integral expressions, but the integrands involve the joint probability density function for six random variables. The procedures are
then applied for the special case of a stationary mean-zero Gaussian process for which the calculations are greatly simplified. Numerical results
for three different spectral density functions demonstrate that conditioning on either only the existence or both the existence and the value of one
peak can have a very significant effect on both the rate of occurrence and the probability distribution of a second peak.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Information about the values of the local extrema of a
stochastic process is valuable in various models for estimating
failure probabilities in mechanical or structural systems. There
is the obvious situation regarding the occurrence of a critical
level of stress or displacement by the dynamic response of
a system, although this usually involves analysis of a global
extreme value within a given period of time, rather than
a strictly local maximum. Prediction of fatigue life, on the
other hand, commonly involves estimation of the magnitude
of a stress range from a local minimum (valley) to a local
maximum (peak), or vice versa. Studying such a stress range,
of course, requires information about the joint distribution of
the valley and peak that define its end points. It should be
noted that this study of local extrema at given time values is
distinctly different from the study of the largest extrema within
a given time interval. The latter problem has received much
study, including the joint distribution of several of the largest
extrema within the interval (e.g., [1]). This is in contrast to
the problem studied here, which seems to have received little
attention.
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Rice [2] gave the probability distribution of a single peak
or valley of a stochastic process, although there is sometimes
some disagreement as to whether these formulas are exact
or approximate. In the formulation used here these formulas
are considered to give an exact description of conditional
probability distributions [3]. The present work then extends
this approach to derive conditional joint distributions for two
peaks, two valleys, or a valley and a peak. From these results
it is possible to derive conditional distributions (or conditional
moments) of one extremum given information about another
extremum. Results are presented both for the situation where
only the existence of the second extremum is given, and for
the case when both the existence and the value of the other
extremum are known. Similarly, the usual form of Rice’s
formula for the rate of occurrence of extrema is extended to give
a joint occurrence rate and a conditional rate given the existence
of another extremum.

The current work focuses on the derivation of the joint and
conditional distributions for a quite general stochastic process,
and the specialization and simplification for the special case of
a mean-zero, stationary Gaussian process. None of the results
require the imposition of any Markov property, but they do
require the existence of finite moment properties of the process
and its first two derivatives. For the Gaussian situation, this
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requires that the autocorrelation function of the process be four
times differentiable.

Numerical results are presented for the extrema of several
example autocovariance functions. Plots are given for condi-
tional rates of occurrence, joint probability density, conditional
probability density, conditional moments, and the correlation
of two peaks. These results demonstrate not only the general
behavior of the joint and conditional rates of occurrence and
distributions, but also the very significant effect of the behavior
of the autocovariance function of the process for very small val-
ues of the time parameter, which depends on the high-frequency
“tail” of the corresponding autospectral density function.

2. General formulation

Let {X (t)} be a stochastic process with continuous and
smooth time histories, and let P1 = X (t1) denote a peak of
the process at time t1. It must be recognized, though, that this
peak occurs only in some of the infinite ensembles of possible
time histories. The probability of the occurrence of peak P1 in
a time interval [t1, t1 + ∆τ1] is

P(P1 exists) = νP (t1)∆τ1 (1)

in which νP (t1) denotes the expected rate of occurrence of
peaks, and is given by [2]

νP (t1) ≡

∫ 0

−∞

w1 pẊ(t1)Ẍ(t1)
(0, w1)dw1. (2)

The cumulative distribution of the peak is found by
investigating the probability of the occurrence of a peak that is
both within the given time interval and below a specified value
u1:

P(P1 ≤ u1 exists)

= ∆τ1

∫ u1

−∞

∫ 0

−∞

w1 pX (t1)Ẋ(t1)Ẍ(t1)
(r, 0, w1)dw1dr. (3)

Thus, the conditional probability of P1 ≤ u1 given that P1
exists is (3) divided by (1) and the derivative of this ratio with
respect to u1 gives the corresponding conditional probability
density function for P1 as

pP1(u1|P1 exists) ≡
d

du1

P(P1 ≤ u1 exists)
P(P1 exists)

=

∫ 0
−∞

w1 pX (t1)Ẋ(t1)Ẍ(t1)
(u1, 0, w1)dw1

νP (t1)
. (4)

These results can be directly extended to describe the behavior
of two peaks. In particular, the joint probability of the
occurrence of peaks P1 = X (t1) and P2 = X (t2) in time
intervals [t1, t1 + ∆τ1][t2, t2 + ∆τ2] can be written as

P(P1 and P2 exist) = νP P (t1, t2)∆τ1∆τ2 (5)

in which the dual occurrence rate for peaks at the two specified
times is

νP P (t1, t2) ≡

∫ 0

−∞

∫ 0

−∞

w1w2 pẊ(t1)Ẍ(t1)Ẋ(t2)Ẍ(t2)

× (0, w1, 0, w2)dw1dw2. (6)

The conditional probability of P1 occurring in [t1, t1 + ∆τ1],
given the existence of P2 in [t2, t2+∆τ2] is the joint probability
in (5) divided by the probability of P2 occurring in [t2, t2 +

∆τ2]. This latter probability is the same as (1), except that
t1 and ∆t1 are replaced by t2 and ∆t2. Dividing the resulting
ratio by ∆τ2 then gives the conditional rate of occurrence of
peaks at time t1 given the occurrence of a peak at time t2:

νP (t1|P2 exists) = νP P (t1, t2)/νP (t2). (7)

Similarly, one can extend (3) to give a joint cumulative
distribution term of the form P(P1 ≤ u1 and P2 ≤ u2 exist),
divide by the probability of occurrence in (5), and take the
mixed partial derivative with respect to u1 and u2 to obtain the
joint probability density function of the peaks, given that both
occur:

pP1 P2(u1, u2|P1 and P2 exist) ≡
∂2

∂u1∂u2

P(P1 ≤ u1 and P2 ≤ u2 exist)
P(P1 and P1 exist)

=
fP P (u1, u2)

νP P (t1, t2)
(8)

in which

fP P (u1, u2) ≡

∫ 0

−∞

∫ 0

−∞

w1w2 pX(u1, 0, w1, u2, 0, w2)

× dw1dw2 (9)

with the vector X defined as X ≡ {X (t1), Ẋ(t1), Ẍ(t1), X (t2),
Ẋ(t2), Ẍ(t2)}T.

At this point one can observe the importance of being
explicit about the conditioning of the various quantities. In
common practice the result in (4) is simply designated as the
distribution of a single peak, without specification that it has
conditioning. If one were to follow this same approach for the
joint distribution, then (8) would be considered as the joint
distribution of two peaks at the specified times. This would
suggest that (4) is the marginal distribution corresponding to
the integration of (8) with respect to one of its arguments. This
is most assuredly not true, though. In fact, integrating (8) over
all possible values of u2 gives a conditional probability density
function for P1 given that P1 and P2 both occur:

pP1(u1|P1 and P2 exist) = gP P (u1)/νP P (t1, t2) (10)

in which

gP P (u1) ≡

∫ 0

−∞

∫ 0

−∞

w1w2

×

(∫
∞

−∞

pX(u1, 0, w1, u2, 0, w2)du2

)
dw1dw2

(11)

and this is quite different from (4), in which only one peak
is known to exist. Integrating with respect to u1 instead
of u2 in (11) gives a corresponding term that will be
denoted as gP P (u2). This can then be used to write the
conditional probability density function for the second peak as
pP2(u2|P1 and P2 exist) = gP P (u2)/νP P (t1, t2).

An additional probability density function of interest for the
random variable P1 is the one conditioned on the existence of
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