EI SEVIED

Contents lists available at ScienceDirect

Surface & Coatings Technology

journal homepage: www.elsevier.com/locate/surfcoat

The scaling behavior and mechanism of Ti₂AlC MAX phase coatings in air and pure water vapor

Zongjian Feng ^a, Peiling Ke ^{a,*}, Qing Huang ^b, Aiying Wang ^{a,*}

- ^a Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- ^b Division of Functional Materials and Nano-devices, Chinese Academy of Sciences, Ningbo 315201, China

ARTICLE INFO

Article history: Received 29 January 2015 Accepted in revised form 27 March 2015 Available online 2 April 2015

Keywords: Ti₂AlC Coating Stainless steel Oxidation

ABSTRACT

The scale behavior of Ti_2AlC coating at 750 °C in air and pure water vapor was investigated. A four-layered scale, a thick TiO_2 and Al_2O_3 mix oxide outer layer, followed by a thin α -(Al, $Cr)_2O_3$ sublayer, a thick Fe_2O_3 and TiO_2 mix oxide mid-layer and a thin Al_2O_3 -rich oxide inner layer in sequence, developed on the Ti_2AlC coatings in air. Whereas internal oxidation occurred, no distinct oxide scale formed on the Ti_2AlC coating in the case of the oxidation in pure water vapor. The Ti_2AlC coating improved the oxidation resistance of 316LSS in air, especially in wet air.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

MAX phases are a group of nanolaminated materials, where M is an early transition metal, A an A-group element, and X either C or N [1]. This group of materials possess unique properties, such as high electrical and thermal conductivity, good machinability, excellent thermal shock resistance and damage tolerance, high elastic modules, high temperature strength, superior oxidation and corrosion resistances [2,3]. As one member of MAX phases, Ti_2AlC was attractive for high temperature structural applications. The high temperature oxidation behaviors of bulk Ti_2AlC have received great attention in the past decade [4–10]. At high temperature in dry air and water vapor a discontinuous TiO_2 outer layer and a continuous protective Al_2O_3 -rich sub-layer form on the bulk Ti_2AlC , suggesting that Ti_2AlC exhibits excellent oxidation resistance. In contrast, Ti_3Al with higher Al content could not form a protective Al_2O_3 scale during oxidation [4–10].

Therefore, Ti_2AlC phase is expected to be one of the promising materials for high temperature corrosion protective coating applications. Ti_2AlC coating has been successfully prepared by numerous physical vapor deposition (PVD) processes [11–17] and high velocity oxy-fuel spray [18]. Thereafter, the oxidation behaviors of Ti_2AlC coating at high temperature in dry air were investigated [15–17]. The scale on the surface of Ti_2AlC coating by PVD consisted of a TiO_2 -rich layer,

E-mail addresses: kepl@nimte.ac.cn (P. Ke), aywang@nimte.ac.cn (A. Wang).

 Al_2O_3 -rich layer, and a $TiO_2 + Al_2O_3$ mixed layer in sequence at 800–900 °C in dry air. For TiAlC coating deposited by high velocity oxy-fuel spray technique there exist TiC and Ti_3AlC phases in the TiAlC which produce a discontinuous alumina, hence, decreasing its oxidation resistance [18]. Thus, the phase purity and microstructure have great influence on oxidation behavior of Ti_2AlC coating.

In addition, pure water vapor is a typical environmental condition in many energy related systems such as coal-fired power plant and nuclear power plant. Water vapor slightly accelerated the oxidation of Ti_2AlC due to the enhanced mass transportation process through the increased oxygen vacancy [8,9], while the influence of the presence of water vapor on the oxidation of Ti_2AlC coating is still unclear. Up to now, few works has focused on the oxidation behavior of Ti_2AlC coating at high temperature in pure water vapor.

In the present work, the oxidation behavior of the Ti_2AlC MAX phase coating, prepared on austenitic stainless steel by DC magnetron sputtering deposition and annealed, was investigated at 750 °C in dry air and pure water vapor, respectively. The scaling behavior was discussed based on the phase formation and microstructure evolution of the Ti_2AlC coating.

2. Experimental

Type 316 L austenitic stainless steels (316LSS) were used as the substrates alloy for the present work, with the nominal composition of 316LSS given as follows: Fe, bal; Cr, 16.0–18.0; Ni, 10.0–14.0; Mo, 2.0–3.0; C \leq 0.03; Mn \leq 2.00; Si \leq 1.00; P \leq 0.045; S \leq 0.03. The steel plates were cut into specimens with the size of 15 mm \times 10 mm \times 2 mm,

^{*} Corresponding authors at: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China. Tel.: +86 574 86685170; fax: +86 574 86685159.

followed by grinding with 1000-grit SiC paper, and degreasing with acetone. The Ti–Al–C coating was deposited on the substrate by reactive DC magnetron sputtering with compound Ti $_{50}$ Al $_{50}$ (at.%) target (400 \times 100 \times 10 mm³) in Ar/CH $_4$ atmosphere with CH $_4$ as the reactive gas. The sputtering parameters were as follows: background vacuum 4.6×10^{-3} Pa; argon pressure 0.5 Pa; power 1.6 kW; room temperature; and sputtering time 10 h. Annealing treatment of the as-deposited coating was conducted at 800 °C in vacuum for 1 h to form the Ti $_2$ AlC MAX phase. The details of the coating preparation can be found in our previous work [19].

The oxidation of the uncoated and coated 316LSS was isothermally conducted at 750 °C, which is a typical working temperature of next generation coal-fired power plant and nuclear power plant, in air and pure water vapor for 200 h, respectively. The air oxidation was carried out in static air. The pure water vapor oxidation was conducted in a high temperature tube furnace with a quartz tube as the reaction chamber. Ultrapure water with 5–7 mg/L dissolved oxygen content was pumped into the 400 °C preheated device to produce pure water vapor, which then flows into the reaction chamber. The pure water vapor flow rate was controlled to be 100–120 ml/s. The pressure of the pure water vapor was 0.1 MPa.

X-ray diffraction (XRD) using a Bruker D8 diffractometer with Cu $\rm K_a$ radiation source was employed to characterize the phase formation. The surface and cross-sections of the samples were also examined by a FEI Inspect FSEM equipped with an Oxford energy dispersive X-ray (EDX) microanalysis.

3. Results and discussion

The Ti₂AlC MAX phase coating is mainly composed of Ti₂AlC phase with small amount of Ti₃AlC antiperovskite phase (Fig. 1a). Fig. 1b and

c shows the surface morphology and cross-sectional morphologies of the $\rm Ti_2AlC$ coating. Due to the mismatch of thermal expansion coefficient between the $\rm Ti_2AlC$ phase and 316LSS, some through-cracks formed in the $\rm Ti_2AlC$ coatings. An Al-rich diffusion layer was also observed at the coating/substrate interface.

XRD analysis (Fig. 2a) reveals that 316LSS after oxidation at 750 $^{\circ}$ C in air for 200 h consisted of only Fe-rich (Cr,Fe)₂O₃. Fig. 2b and c shows the surface and cross-sectional morphologies of 316LSS after oxidation at 750 $^{\circ}$ C in air for 200 h. The steel oxidation in air formed a uniform scale mainly composed of Fe-rich oxides. Cross-sectional morphology showed that the thin Fe-rich scale was porous with poor adhesion to the substrate.

XRD analysis (Fig. 3a) indicates that the scale formed on the Ti₂AlC coating after oxidation at 750 °C in air for 200 h is mainly composed of α -(Al,Cr)₂O₃, θ -Al₂O₃ and rutile TiO₂. The surface morphology of the Ti₂AlC coating after oxidation at 750 °C in air for 200 h (Fig. 3b) showed clearly that the through-cracks present in the as-prepared coatings have been filled with Ti-rich oxides. However, no spallation was observed. The cross-sectional morphologies of Ti₂AlC coating after oxidation at 750 °C in air for 200 h showed that the scale exhibited a four-layered microstructure, a thick TiO₂ and Al₂O₃ mix oxide outer layer, followed by a thin α -(Al,Cr)₂O₃ sublayer, a thick Fe₂O₃ and TiO₂ mix oxide midlayer and a thin Al₂O₃-rich oxide inner layer in sequence (Fig. 3c and d). No micropores or cracks were found at the Al₂O₃-rich oxide layer/substrate interface. Fig. 3e shows the corresponding EDX line scanned along the black line in Fig. 3d. EDX analysis indicated that the shape of the Cr curve agrees with that of Al curve. It is strongly confirmed that the sublayer is α -(Al,Cr)₂O₃. An Al-rich layer was detected at the coating/substrate interface, while an Al-depleted zone formed next to the coating/substrate interface. Beneath the Al-depleted zone, large amounts of Al-rich phase precipitation could be observed.

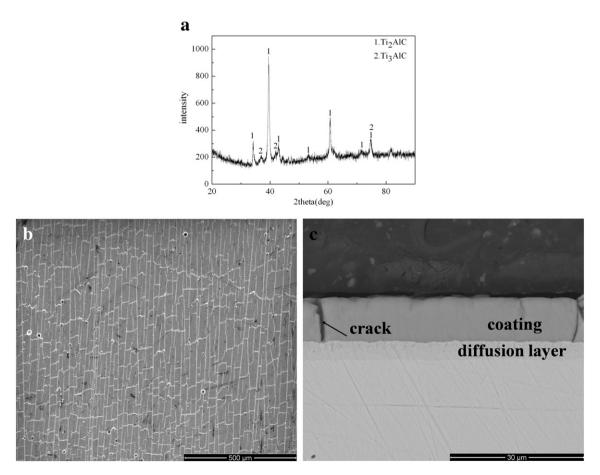


Fig. 1. XRD pattern (a), surface morphology (b) and cross-sectional morphologies (c) of the Ti₂AlC coating.

Download English Version:

https://daneshyari.com/en/article/8026580

Download Persian Version:

https://daneshyari.com/article/8026580

<u>Daneshyari.com</u>