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a b s t r a c t

The ‘‘power law’’ is often used to describe steady state/minimum creep rate as well as
steady state superplastic deformation, both of which are observed under low-stress,
high-homologous temperature conditions. In these cases, the activation energy, the
proportionality constant in the strain rate equation and the stress exponent, n, change with
the physical mechanism. Here a simpler alternative procedure for introducing a
dimensionless stress term in the rate equation compared with the one used by materials
scientists is advocated. The microstructure/crystal structure dependence of strain rate is
introduced using the Buckingham Pi theorem. For the case where the contribution from
the structure/microstructure terms to the isothermal deformation rate is constant,
Laurent’s theorem helps generate a set of admissible values for n. The simplest solution
of n being independent of stress, but a linear function of temperature, describes low stress,
steady state creep rather well. (The case where n is independent of both stress and
temperature follows as a special case of this solution.) The next simplest solution of n being
a linear function of both temperature and stress corresponds to steady state superplastic-
ity. Using the equations derived, the stress exponent, real and apparent activation energies
for the rate controlling flow and strain rate values at different stresses and temperatures
can be estimated. The equations are validated using experimental results pertaining to
many systems. The implications of the findings are discussed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Creep failure often determines the life of
high-temperature components. Frequently costly compo-
nents are allowed to continue in service beyond their
design lives. Steady state creep strain rate or minimum
creep rate in industrial alloys is used as a criterion for
designing components. For ensuring safe operation and

predicting the residual life of a component in service, the
constitutive (rate) equation of flow should be accurate.

Superplastic forming, in contrast, is an important
(near-) net-shape forming process which finds application
in several areas, e.g. aerospace, surface transport, architec-
ture, entertainment and sports goods industry etc. As
optimal superplasticity is observed only within a narrow
strain rate-temperature window, an accurate constitutive
equation for the rate of flow is desirable for efficient
forming. Both creep and superplasticity are low stress, high
homologous temperature deformation processes.

The total strain suffered by a specimen during high
homologous temperature deformation is the sum of
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instantaneous elastic and plastic strains and
time-dependent strain (Rabotnov, 1969; Odquist, 1953;
Hoff, 1956). As the first two strain contributions are small
compared with the third, they are often ignored. Many
studies (Padmanabhan and Davies, 1980; Kaibyshev,
1992; Nieh et al., 1997; Padmanabhan et al., 2001;
Garofalo, 1965; Hart, 1967; Mukherjee et al., 1969;
Gittus, 1975; Dieter, 1988; Mukherjee, 2002) have
established the relationship _e / exp � Q

kT

� �
, where e9 is the

strain rate, Q the activation energy for the rate controlling
process, k the Boltzmann constant and T is the absolute
temperature of deformation. When the contribution from
the structure terms, S, is constant, materials scientists
often describe uniaxial, low stress, steady state, high
homologous temperature deformation in terms of the
equation

_e ¼ A01
r
G

� �n
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� �
ð1Þ

where A01 and n are temperature-, material- and grain-size-
dependent constants. The structure term is introduced
using the average grain size, L, viz., as

_e ¼ A001
L
b

� �p r
G

� �n

exp � Q
kT

� �
; ð1aÞ

where b is Burgers vector and A001 is another constant.
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T
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with A02 yet another constant, is also used (Mukherjee
et al., 1969; Mukherjee, 2002; Raj and Langdon, 1989;
Brown and Ashby, 1980). Eqs. (1)/(2) has been used
extensively to interpret creep/superplasticity data assum-
ing this equation to be universal and relevant for all the
physical mechanisms associated with high temperature
deformation, not only in metals, but also in industrial
alloys. Even in the latter, where a number of physical
processes could co-exist, often the assumption is that
there is one rate controlling process among the many
processes present. Therefore, an experiment was
conducted in our laboratory in Muenster to check if a
correlation between high temperature creep and volume
diffusion of carefully chosen species exists in equiatomic
NiTi alloy (Taillebot et al., 2008). The results were
inconclusive. This finding compelled us to take a re-look
at Eqs. (1) and (2).

Theoretical justification for generic equations like
Eqs. (1) and (2) lies in dimensional analysis. Experience
of a century in the field of plasticity suggests that for mak-
ing stress dimensionless, a carefully selected reference
stress could definitely be an easier to determine normal-
ization basis compared with the shear modulus, e.g.
Tresca yield criterion. This alternative stress normalization
procedure is advocated here. It emerges that in some cases
this method helps reduce the number of physical mecha-
nisms needed to interpret a given set of experimental data
compared with the method in which the normalization
basis is G.

2. Definition of the problem

Eq. (1) was examined in Brown and Ashby (1980),
Stocker and Ashby (1973), Derby and Ashby (1984), Pharr
(1985). The following conclusions were drawn. (a) In dif-
ferent systems, n varies from 3 to 12, A01 from 1 to 1017.
Therefore, A01 is not a constant, as is assumed. (b) On an
empirical basis, a linear relation exists between A01 and n
for many classes of materials. Therefore, a value of A01;inde-
pendent of n, as assumed (Zhu and Langdon, 2005), cannot
be justified. (c) Experimentally, the majority of creep data
lies in a very narrow range 10�4 < ðr=GÞ < 10�3 (due to G
being far greater than r), which makes accurate inferences
difficult. (d) On an empirical basis the constant (the analog
of A01) obtained after normalizing r by the tensile yield
stress, ry, to a good approximation, is a constant for a given
structural class of solids (Brown and Ashby, 1980).

The present authors encountered a few additional diffi-
culties. (e) The shear modulus, G, is calculated, ab initio,
using quantum mechanical considerations (Cottrell,
1988). Flow stress, in contrast, belongs to the realm of
classical mechanics. One may, nevertheless, simplify the
temperature dependence of G to a linear form, as done
by Frost and Ashby (Frost and Ashby, 1982). But, the latter
authors advocate the use of the same temperature depen-
dence expression for all alloys of a given major component,
e.g., Al-alloys, steels etc. This approximation makes its
usefulness limited when comparing alloys of the same base
element, e.g., comparing different Ni-alloys, steels or
Al-alloys. Moreover, the temperature dependence of flow
stress, r, is exponential. Therefore ðr=GÞ is not tempera-
ture independent. In view of this, we prefer to introduce
a carefully chosen reference stress as the normalizing
basis, which will make the normalized term dimensionless
under all experimental conditions. (f) In many experi-
ments, e.g., (Loveday and Dyson, 1979), where n ¼ 9, an
experimental inaccuracy in the value of n of, say, 5%
(a common experimental error), will change the strain rate
by an order of magnitude when the normalization is with
respect to G, i.e., the accuracy of calculations is adversely
affected. Also, in many cases even in a narrow temperature
range in which a change in the rate controlling mechanism
is not expected, the value of n changes with T. Therefore,
ignoring the 10–20% variation seen experimentally in the
value of n (Raj and Langdon, 1989) and/or assigning a mean
n value for the temperature range of interest is not wise.
(g) In many cases (e.g. Raj and Langdon, 1989), the true
activation energy determined using Eq. (1)/Eq. (2)
decreases with increasing magnitude of the constant
ðr=GÞ ratio at which Q is determined and the authors
assume a further dependence of the ‘true’ activation
energy on the magnitude of the applied stress, which has
no justification.

In the present analysis, the room temperature tensile
yield stress of the material is proposed as the normalization
basis for stress, rc, in the creep equation. The normalization
basis in case of superplastic flow is the stress at which n is
unity in the strain rate – dimensionless stress space, which
can be calculated (see below). The possibility that n could
be a function of T or T and r is not ruled out. The problem
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