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a b s t r a c t

The present paper focuses on the effect of microcracks on the overall properties of visco-
elastic materials. For this goal we extend Maxwell homogenization scheme to the case of
viscoelasticity and derive explicit formulas for components of the anisotropic creep oper-
ator in dependence on scatter parameter characterizing orientation distribution of cracks.
Microcracks can have any orientation distribution with randomly oriented and strictly par-
allel being the limiting cases. Viscoelastic behavior is described using fraction-exponential
operators. The results are illustrated on example of microckracked polymethylmethacry-
late (PMMA).

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the present paper we focus on the effect of micro-
cracks on the overall viscoelastic properties of hereditary
materials. For this goal we extend Maxwell homogeniza-
tion scheme to the case of viscoelasticity and derive expli-
cit formulas for components of the anisotropic creep
operator in dependence on scatter parameter characteriz-
ing orientation distribution of cracks. Viscoelastic behavior
is described using fraction-exponential operators (see
Rabotnov (1948, 1977)).

Generalization of the methods of micromechanics
(developed originally for elastic heterogeneous materials)
to viscoelastic composites have been proposed in a number
of works in 1960s following remark of Eshelby (1957) that
his results on elastic inclusion can be extended to linear
viscoelastic materials. Hashin (1965) derived explicit rela-
tions for effective properties of viscoelastic composites
with spherical and cylindrical inhomogeneities in terms
of effective relaxation time and creep compliances.

Schapery (1967) used Laplace–Carson transform to reduce
the time-dependent homogenization problem into one of
classic elasticity. To the best of our knowledge, Hashin
(1970) first suggested to use elastic–viscoelastic corre-
spondence principle to extend the classical homogeniza-
tion schemes to the case of viscoelastic composites. This
approach has been used for instance by Laws and
McLaughlin (1978) who applied the self-consistent scheme
to viscoelastic constituents. Wang and Weng (1992) and
Brinson and Lin (1998) used it for generalization of Mori–
Tanaka scheme; DeBotton and Tevet-Deree (2004) – for
derivation of Hashin–Shtrikman bounds for viscoelastic
composites. General bounds for the complex moduli of vis-
coelastic composites have been obtained by Gibiansky
et al. (1999) using the Hashin–Shtrikman procedure and
the translation method. Sanahuja (2013) compared differ-
ent micromechanical scheme in the context of their pre-
dicting ability for aging linear viscoelastic composite with
spherical inhomogeneities. Brenner and Suquet (2013),
focusing on composites with Maxwellian constituents,
obtained two asymptotic relations for the effective creep
function of linear viscoelastic composites and discussed
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their physical meaning at short and long times. Their work
improves previous one of Suquet (2012). Based on these
relations, the authors proposed an approximate model for
the creep function of a linear viscoelastic heterogeneous
that approximates the retardation spectrum of the com-
posite by a single discrete Dirac mass. The retardation time
and its corresponding weight depend on the coupling
between the elastic (resp. viscous) local compliances and
the viscous (resp. elastic) stress field fluctuations.

Allen and Yoon (1998) formulated general principles of
homogenization for heterogeneous linear thermoviscoelas-
tic materials with stress–strain behavior of convolution
type. The authors used elasticity–viscoelasticity correspon-
dence principle and showed, in particular, that the macro-
scopically averaged relaxation moduli may be incorrect
unless the time dependent nature of the strain localization
tensor is taken into account. However, this error is negligi-
ble for most real materials.

In the context of microcracked viscoelastic materials,
Zocher et al. (1997) were, probably the first ones who con-
sidered microcracked viscoelastic materials and compared
analytical formulas, obtained with Laplace transform, with
the finite elements calculations. Nguyen et al. (2011) built
the effective moduli of a microcracked non-aging

viscoelastic material that follows Burger model (combina-
tion of Maxwell and Kelvin sequences of dashpots and
springs). Souza and Allen (2012) proposed a FEM proce-
dure for determining the homogenized instantaneous (tan-
gent) constitutive tensor of elastic materials containing
growing cracks.

In all the mentioned problems, the approach to find
analytical solution of the homogenization problem for a
heterogeneous material with viscoelastic constituents is
based on elasticity–viscoelasticity correspondence princi-
ple. The problem is formulated in the Fourier or Laplace
domain, treated as the elastic one, and then, inverse trans-
form gives the desired viscoelastic solution. The use of the
Laplace transform has also been crucial in proving that
short memory effects in the individual constituents give
rise, after homogenization, to long memory effects in the
composite (Sanchez-Hubert and Sanchez-Palencia, 1978;
Suquet, 1986). The main challenge appearing in this
approach is to obtain analytical formulas for inverse trans-
form. It can be done only for some particular governing
relations. Actually, governing relations of viscoelasticity
(as all other relations of this kind) are of phenomenological
nature – they are chosen from matching experimental data
obtained from standard tests on creep and relaxation.

Main notations

”�a b; tð Þ fraction exponential operator

Greek letters
aij second rank crack density tensor
a one of the parameters characterizing fraction-

exponential operator �1 < a 6 0
bijkl fourth rank crack density tensor
b one of the parameters characterizing fraction-

exponential operator (b < 0)
C aspect ration of the effective inclusion in Max-

well’s scheme
De extra strain (per reference volume V) due to the

presence of the inhomogeneity
e1 the remotely applied strain
f scatter parameter for cracks distribution
k one of the parameters characterizing fraction-

exponential operator, b < k < 0
l0 elastic shear modulus of the bulk material
l1 shear modulus at t ?1
l⁄ shear operator of creep
(l⁄)�1 shear operator of relaxation
m0 elastic Poisson’s ratio of the bulk material
q scalar crack density
r1kl remotely applied uniform stresses
u angle between normal to the crack surface and

x3-axis
X effective inclusion in Maxwell’s scheme

Latin letters
g1–6(f) functions describing dependence of the compo-

nents of the crack density tensors on orienta-
tion distribution of cracks

H compliance contribution tensor
Heff compliance contribution tensor of the effective

inclusion in Maxwell’s scheme
Hi compliance contribution tensor of ith inhomo-

geneity
~hi coefficients representing tensor l0

V�
P

iV iHi in
tensor basis given in the Appendix A

K0 bulk elastic modulus of the material
Kijkl(t) forth rank tensor creep kernel
Ma zð Þ Mittag–Leffler function
N stiffness contribution tensor
Pf(u) orientation distribution function for multiple

cracks
Q one of two Hill’s tensors
QX is the Hill’s tensor calculated for the shape of X
S0 and S1 are compliance tensors of the matrix and inho-

mogeneity
Seff effective compliance calculated using Maxwell

scheme (formula (2.19))
Slin

eff effective compliance calculated using Maxwell
scheme linearized with respect to interaction
parameter (formula (2.20))

SNIA
eff effective compliance calculated for non-inter-

acting inhomogeneities
s1 coefficients representing tensor Seff in tensor

basis
slin

3 coefficients representing tensor Slin
eff in tensor

basis
T(i) elements of standard tensor basis
V reference volume
Vi volume of ith inhomogeneity
V⁄ volume of the effective inclusion in Maxwell’s

scheme
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