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a b s t r a c t

The Fleck–Hutchinson theory on strain gradient plasticity (SGP), proposed in Fleck and
Hutchinson (1997), has been reformulated by adopting the strategy of decomposing the
second order strain presented by Lam et al. (2003). This study attempts to build a SGP
framework for general loading histories which has yet been well addressed. The main
features of this study include: (1) The total number of the elastic characteristic length
scales has been reduced from 5 to 3; (2) The anti-symmetric part of the rotational gradient
has been found to have no influence on SGP; (3) The established SGP flow theory is
characterized by its strict correspondence to the conventional J2 plasticity. This thermody-
namically acceptable reformulation has been proven to satisfy the nonnegativity of plastic
dissipation, which is still an outstanding issue in other SGP theories. It explicitly shows
how elastic strain gradients and corresponding elastic characteristic length scales come
into play in general elastic–plastic loading histories. Another feature of the present SGP
formation is the exclusion of plastic strain-related boundary conditions which believably
will facilitate SGP applications significantly.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Important conceptions in the family of SGP theories are
recalled via a brief review without seeking the wideness of
literature coverage. Motivated by observed size effects in
nonhomogeneous plastic deformations on the micron scale
such as tests of microbend (e.g., Stölken and Evans, 1998),
indentation (e.g., Nix and Gao, 1998), and wire torsion (e.g.,
Fleck et al., 1994), SGP theories were developed by many
researchers with the emphasis on the role of strain gradi-
ents, based on the physics picture that both statistically
stored dislocation (SSD) and geometrically necessary dislo-
cation (GND) come into play. The fundamental SGP

versions include Fleck et al. (1994), Fleck and Hutchinson
(1997), Gao et al. (1999), Fleck and Hutchinson (2001),
Gao and Huang (2001), Gundmundson (2004) and Fleck
and Willis (2009). Despite of numerous successes that
SGP has already achieved, some fundamental adjustments
are in urgent needs, as discussed by for example,
Hutchinson (2000), Evans and Hutchinson (2009) and
Hutchinson (2012). Amongst existing issues, one major
challenge is that SGP theories are not robustly workable
in problems with general loading histories, for example
loading–unloading cycles. Other issues announced by
Hutchinson (2012), such as unreasonable discontinuous
changes in higher order stresses upon certain infinitesimal
load changes and failure in guaranteeing nonnegative
dissipations, are believed to arise also due to lack of robust
SGP theory for complex loading histories.

The omission of the strain gradient elasticity effect, as
done in the SGP theories like Fleck and Hutchinson (2001)
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and Gundmundson (2004), directly leads to discontinuous
changes in total strain gradients during complex loading
histories, and therefore causes the fundamental issues
summarized by Hutchinson (2012). Consideration of elastic
strain gradient requires a good understanding of strain gra-
dient elasticity (SGE) theories, which have been described
in details by Fleck and Hutchinson (1997) on formulations
of kinematics, kinetics, as well as equilibrium and boundary
conditions. In order to ease the complexity in dealing with 5
elastic material characteristic length scales appearing in
the expression of elastic second order strain energy density,
Lam et al. (2003) proposed a new decomposition strategy of
second order strain and, hence, reduced the total number of
elastic length scales to 3, based on the conclusion that the
anti-symmetric part of the rotational gradient should not
enter the expression of the second order strain energy
density. Notably, the strain gradient decomposition
proposed by Lam et al. (2003) was an important theoretical
advancement even though the elastic length scales were
controversially argued to be on the order of micron. In the
present study, an attempt is made to combine the above-
mentioned theories in a compatible manner, to formulate
a SGE-SGP framework, which is expected to possess the
capacity for cases with general loading histories.

Generalization of the conventional flow theory will be
made to establish the present SGP theory. Many significant
advances in the history of plasticity theories were
accomplished by generalization or extension of certain
conclusions for some simpler cases. For example, the
three-dimensional formulations of flow theory and
Drucker’s postulate were obtained by generalizing the
one-dimensional counterparts which are based on uniaxial
tension tests. In handling SGP, a generalization of treating
variables of the same dimension in an analogous manner
has been commonly adopted, for example the plastic strain
gradient multiplied by the plastic characteristic length
scale was taken as the plastic strain, and the higher order
stress divided by the material length scale was treated in
the same manner as the lower order stress, i.e., Cauchy
stress. The above-mentioned generalization will be also
adopted for the present study. Furthermore, since there
are two sets of length scales, i.e. the elastic one and the plas-
tic one, an emphasis will be made about their proper usages.

The paper is organized as follows. A summary of the
SGE theory is provided in Section 2. Subsequently, in
Section 3 the conventional J2 flow theory is revisited and
used as a template for generalization of the conventional
plasticity in the SGE-SGP settings including development
of a new flow theory and satisfaction of Drucker’s postulate
with the consideration of elastic–plastic second order
strain decomposition. The wire torsion problem is studied
as an example to show the ability of the present theory
in Section 4. This paper ends with conclusions and
discussions in Section 5.

2. SGE framework

In this section, the SGE theory presented by Lam et al.
(2003) is reformulated to link with the SGP theory. For a
general linear isotropic elastic solid, the general SGE
formulation is firstly introduced, which can be reduced to

the couple stress version by excluding all other strain
gradient components except the rotational gradient. To
achieve a compatible SGE-SGP framework during
elastic–plastic deformation processes that will be studied
in following sections, the necessary generalizations of the
theory in Lam et al. (2003) will be made, providing
a detailed introduction of the platform from which gener-
alization of the conventional plasticity will be carried out.

The generalized strain variables are the symmetric
strain tensor �ij and the second order gradient of displace-
ment gijk, which are expressed, respectively, as

�ij ¼ �ji ¼
1
2
@iuj þ @jui
� �

; gijk ¼ gjik ¼ uk;ij ¼ @ijuk; ð2:1Þ

where ui is the ith displacement component and @ i is the
forward gradient operator.

The major difference between the conventional elastic-
ity and SGE is that the change in elastic strain energy
density, _W , depends on the changes in both �ij and gijk

due to an arbitrary infinitesimal variation of displacement
u. In the energetic calculation, in order to maintain
consistency with the following SGP formulations, the
superscript ‘‘e’’ which denotes ‘‘elasticity’’, is added onto
strains and second order strains as well as the strain
energy, which makes no change in the present section
because there are �e ¼ �, ge ¼ g and therefore We ¼W
for pure linear elastic problems. The change in energy is
written as,

_We ¼ rij _�e
ij þ sijk _ge

ijk; ð2:2Þ

where the symmetric Cauchy stress rij ð¼ rjiÞ and the
higher-order stress sijk ¼ sjik

� �
are the work conjugates of

respectively the elastic strain and second order strain,
�e

ij ¼
R

_�e
ijdt and ge

ijk ¼
R

_ge
ijkdt. The higher order stress tensor

is composed of both couple stresses and double stresses.
The work statement Eq. (2.2) gives the following elastic
constitutive relations,

rij ¼
@We

@�e
ij

; sijk ¼
@We

@ge
ijk

: ð2:3Þ

It is worth noting that in the following sijk will not be given
directly but can be constructed by putting together the
work conjugates of particular compositions of the second
order strain g. In the following we adopt the SGE formula-
tion by Lam et al. (2003). For comparison purpose, the for-
mulation used by Fleck and Hutchinson (1997) is
presented in Appendix A.

Firstly, by decomposing the second order strain g into
symmetric and anti-symmetric parts via the strategy pro-
posed by Fleck and Hutchinson (1997), we obtain,

g ¼ gS þ gA;gS
ijk ¼

1
3

gijk þ gjki þ gkij

� �
;

gA
ijk ¼

2
3

eikpvpj þ ejkpvpi

� �
:

ð2:4Þ

where v is the rotational gradient.
Subsequently, new independent second order strain

metrics are obtained by splitting the symmetric second
order strain gS

ijk into a trace part gð0Þijk and a traceless part
gð1Þijk , as follow:
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