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a b s t r a c t

A two-scale computational homogenization method for deriving the effective elastic
parameters of regular cell material is presented. In the present application, particle model
is used as the micromechanical model and classical linear elasticity as the continuum
model. The method is designed to render the same effective elastic parameters irrespective
of the Representative Volume Element (RVE) used for a cell structure. This requires
simultaneous fulfillment of the kinematic and kinetic conditions of computational
homogenization derived in the study. Also, the relationship between the quantities of
the micromechanical and continuum model needs to be invertible on a RVE. Effective
elastic parameter expressions for eight planar cellular materials obtained with a typical cell
as the RVE are compared to their counterparts in literature. As an application example, a
new closed-form compliance expression covering e.g. the square, regular hexagon,
rhombus, over-expanded hexagon, and re-entrant hexagon cell structures of literature is
presented.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many engineering materials, for example wood and low
density cellular foams (Gibson and Ashby, 1997), have a
microstructure consisting of cells that must be taken into
account in the analysis of mechanical properties. In
addition, 3D printing makes it feasible to create cellular
materials with different microstructures from the isotropic
base material. The mechanical properties of this type of
cellular or granular material can have mechanical proper-
ties suitable for various engineering applications. Accurate
prediction of the effects of the microstructure and base
materials on the effective material properties is a prerequi-
site for the efficient use and design of cellular materials.

In a rough classification, mechanical modeling of
cellular material can be based on a micromechanical or
continuum model. The former approach uses a detailed

description of the cell geometry and material properties
of the cell walls. This separation of the geometrical and
material features is advantageous from the modeling
viewpoint and enhances the understanding of the effects
of geometrical and material parameters on effective
mechanical properties. In the continuum approach, the
solution domain consists of the regions occupied by cells.
Continuum models have some distinct advantages from
the computational viewpoint as small scale geometrical
details of the cell structure need not to be modeled explic-
itly. The challenge is placed on the effective constitutive
equations that depend not only on the material properties
of the cells but also on the geometry of the cell structure.

Computational homogenization is a method for
deriving the effective constitutive equation of a continuum
model out of the given micromechanical model. The
method, based e.g. on matching of the virtual work expres-
sions of the two models, has various applications of which
finding the effective elastic parameters of material having
a microstructure is the most common. The method applies
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to irregular and regular microstructures although, in the
former case, one may have to deal with issues such as
modeling of the conditions at the boundaries as discussed
e.g. in Nguyen et al. (2011), Larsson et al., 2011, and
Coenen et al. (2012). Statistical nature of the material
properties and the effect of scale (Kanit et al., 2003) may
bring additional complications. Under the regular micro-
structure assumption, it is sufficient to consider a Repre-
sentative Volume Element (RVE) with Periodic Boundary
Conditions (PBC). With proper kinematic and kinetic con-
ditions on the RVE, the effective constitutive equation
obtained describes the behavior of a non-bounded struc-
ture consisting of the RVE’s. The regular cell structure
model gives a particularly clear picture about the effects
of the cell geometry and cell wall material properties on
the cell structure rigidity as explicit expression for the
effective material parameters are often obtained.

Methods for the computational homogenization of reg-
ular cell material have been reviewed e.g. by Hohe and
Becker (2002), Charalambakis (2010), and Ostoja-
Starzewski (2002). According to Hohe and Becker (2002),
the methods can be classified into surface average meth-
ods, volume average methods, and two-scale expansion
methods. In addition, various ‘ad hoc’ methods ranging
from cell-type specific compliance methods to more formal
stiffness methods are used in literature. Also, effective
elastic parameter expression for the many variants of elas-
tic triangle, rectangle, and hexagon cell structures are well-
known (cf. Wang and McDowell (2004) and Gibson and
Ashby (1997)). Most results and discussion of literature
are related with planar structures and the effective Young’s
moduli and Poisson’s ratios for the plane-stress or plane
strain continuum models. The likely reason is that the sim-
ple beam-truss cell model is acceptable in the planar case,
whereas the corresponding cell description in three dimen-
sions requires the plate-model or a model based on the full
set of elastic equations. Aside from the cell application,
effective elastic properties of three-dimensional beam-
truss structures have been discussed e.g. in Wallach and
Gibson (2001) and Vigliotti and Pasini (2012).

Although the same result can be obtained with different
combinations of the method and RVE, often the conditions
for the correct result have not been explained in detail or
the physical meaning of the conditions is not obvious. In
addition, sometimes the correct outcome is due to a clever
combination of the method and RVE, so that a reader may
get an impression that only a certain RVE out of the many
possibilities for a given cell structure works. In the writer’s
opinion, a detailed explanation of the conditions to be
imposed on a RVE would improve the understanding in
this respect.

The aim of the article is to discuss the kinematic and
kinetic conditions to be satisfied in computational homog-
enization of regular cell structure and the way to satisfy
the conditions simultaneously. The principle of virtual
work and kinematic assumption are used in the same man-
ner as in the derivation of engineering models (beams,
plates etc.) starting from the generic equations of elasticity.
It turns out, that computational homogenization of regular
cell structure means matching the continuum and particle
model virtual work expressions under the kinematic and

kinetic conditions of Hill-Mandel type (Larsson and
Diebels, 2007). The method of this article is based on the
well-known ideas explained e.g. in Charalambakis (2010)
and references therein but contains ingredients that are
essential when the micromechanical model is essentially
a particle one. The particular selection requires an approx-
imation of the gradient operator inside a polyhedron and
kinetic conditions of a certain type. Small displacements
and rotations are assumed throughout the study to keep
focused on the primary goal.

As examples, effective elastic parameters for eight pla-
nar cell structures are compared to their counterparts in
literature. In the writer’s knowledge, the cell-type RVE’s
have not been used elsewhere although the choice is quite
natural for a cell structure. As an application example, a
new closed-form compliance expression covering e.g. the
square, regular hexagon, rhombus, over-expanded hexa-
gon, and re-entrant hexagon cell structures of literature
is presented.

1.1. Dyadic notation

Vector and dyadic tensor notation is used throughout

the article. Single and double arrowheads in ~a and a
$

etc.
denote dyads of order 1 and 2, respectively. Outer products
of vectors and dyadic quantities are written in the concise

forms ~a~c �~a�~c and a
$

c
$
� a
$
� c
$

, as there should be no
danger for misinterpretations. The notations for the inner

and cross-products are usual i.e. ~a �~c and ~a�~c, and a
$
� c
$

.

The double inner product a
$

: c
$

of second order dyads has

the interpretation ~a~b :~c~d � ð~b �~cÞð~a �~dÞ. Finally, the

conjugate a
$

c of dyad a
$

is defined by ~b � a
$

c ¼ a
$
�~b 8~b and

the second order unit dyad I
$

by I
$
�~a ¼~a � I

$
¼~a 8~a.

Polyhedrons with planar faces and selected points of
the polyhedral domain, called as nodes, are used in the cell
structure description. Geometry of the polyhedron is taken
to be defined by the exterior nodes located on the edges of
the planar faces. Position vector of nodes i is denoted by~ri.
Notation ~rii 2 Iext is used for the set of exterior nodes
located on the polyhedron and ~rii 2 Iint for the set of
interior nodes located inside the polyhedron.

2. Gradient approximation

Approximation of the gradient operator inside a
polyhedron is needed later in the discussion. The gradient
approximation can be taken as a generalization of the
one-dimensional difference approximation to the first
derivative and it also shares some of the well-known
properties of the one-dimensional version.

For a continuous vector field ~uð~rÞ of constant r~u on a
polyhedral domain X, Gauss’s theorem implies that

Vr~u ¼
X

a

~Aa~ua; ð1Þ

in which the sum extends over the polyhedron faces, ~Aa is
the outward directed area of face a,~ua is the mean value of
~uð~rÞ on face a, and V is the volume of the polyhedral
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