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a b s t r a c t

In this paper, the contact problem between a rigid indenter and a viscoelastic half space
containing either isotropic or anisotropic elastic inhomogeneities is solved. The model
presented here is 3D and based on semi-analytical methods. To take into account the vis-
coelastic properties of the matrix, contact and subsurface problem equations are discret-
ized in the spatial and temporal dimensions. A conjugate gradient method and the fast
Fourier transform are used to solve the normal problem, contact pressure, subsurface prob-
lem and real contact area simultaneously. The Eshelby’s formalism is applied at each step
of the temporal discretization to account for the effect of the inhomogeneity on pressure
distribution and subsurface stresses. This method can be seen as an enrichment technique
where the enrichment fields from heterogeneous solutions are superimposed to the homo-
geneous viscoelastic problem solution. Note that both problems are fully coupled. The
model is validated by comparison with a Finite Element Model. A parametric analysis of
the effect of elastic properties and geometrical features of the inhomogeneity is proposed.
The model allows to obtain the contact pressure distribution disturbed by the presence of
inhomogeneities as well as subsurface and matrix/inhomogeneity interface stresses at
every step of the temporal discretization.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials are more and more used in several
domains of the engineering: aeronautics, automobiles
. . .Some of these composite materials are made of by visco-
elastic matrix and generally reinforced with anisotropic
elastic fibers. Considering the complexity of these materi-
als, it is difficult to develop a mathematical model allowing
to analyze or predict their behavior within the framework
of contact mechanics. Several authors have shown interest
to the problem of contact between homogeneous
viscoelastic materials. Lee and Radok (1960) obtained the
solution of contact pressure and area for the spherical

indentation of a linear viscoelastic material. This solution
is valid only for monotonical increase of the contact area
and leads to a negative pressure when the contact area
decreases. Since then, several approaches were proposed
in the literature to overcome this issue. Hunter (1960)
and Graham (1967) introduced methods for viscoelastic
indentation test which are able to handle the case when
the contact radius possesses a single maximum. Ting
(1966, 1968) dealt with the indentation problem in which
the time dependent contact area is an arbitrary function of
time, and the indenter has an axisymmetric profile. Most of
the solutions presented above are based on complex ana-
lytical formalisms, and limited to particular geometries
(cone, sphere) and to the ideal viscoelastic material with
only one relaxation time. Several other authors were
interested in the indentation problem, rolling, sliding and
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rolling friction for viscoelastic materials. This is the case of
Argatov (2012) who gave the analytical solution of the
rebound indentation problem for an isotropic linear visco-
elastic layer loaded with a spherical punch. His model is
only valid for the indentation phase with a monotonic
loading. A contact between an axisymmetric indenter and
a viscoelastic half-space is presented by Greenwood
(2010). Considering the sliding contact or rolling friction
in viscoelastic contact problem; Hunter (1961) and later,
Goriacheva (1973) proposed a solution for the rolling con-
tact between a rigid indenter and a viscoelastic half-space.
Both approaches have in common to limit themselves to
particular shape (cylindrical) of the indenter and to an
ideal viscoelastic material. To get rid of the indenter shape
limitation, Vollebregt (2011) proposed a model based on
boundary element method. His model can only account
for viscoelastic material with one single relaxation time.
Recently, Carbone and Putignano (2013) introduced a
novel methodology to investigate steady-state viscoelastic
sliding or rolling contact based on boundary element

method. Their approach is able to deal with a large spectra
of relaxation times for the viscoelastic materials. Other
authors (Nasdala et al., 1998; Le and Rahler, 1994;
Nackenhorst, 2004; Padovan et al., 1992, 1984) solved
the sliding/rolling friction problem of viscoelastic contact
using the Finite Element Method. This method is able to
account for the real viscoelastic materials and any geome-
try of contacting bodies. However using the Finite Element
Method, the accuracy of the contact solution in terms of
pressure and subsurface stresses is often insufficient. A
robust semi-analytic method for contact between a rigid
indenter and a viscoelastic half-space has first been intro-
duced by Chen et al. (2011). This semi-analytical approach
can account: for a wide spectra of relaxation times for lin-
early viscoelastic materials, an arbitrary loading profile
(with possibility of decreasing the contact area); it can also
simulate contact with a rough surface by incorporating the
asperity heights into initial surface gap. The model pre-
sented in this paper is based on the semi-analytical
method introduced by Chen et al. (2011) for viscoelastic

Nomenclature

Letters
a� contact radius
a1; a2; a3 semi-axes of an ellipsoidal inhomogeneity
B�ijkl influence coefficients that relating the stress rij

at point ðx3
1; x2; x3Þ to the constant eigenstrain at

the point ðxk
1; x

k
2; x

k
3Þ

CM
ijkl;C

I
ijkl elastic constants of the matrix and the inhomo-

geneity
EI Young’s modulus of the inhomogeneity
h distance between the two surfaces of the con-

tacting bodies
HðtÞ the Heaviside step function
Iijkl the fourth-order identity tensor
JðtÞ viscoelastic creep function
Kn coefficients in the normal displacement at the

contact surface due to the contact pressure
L1; L2; L3 lengths of the three sides of the matrix in Finite

Element Model
Mij influence coefficients relating the stress rij at

the point ðx1; x2; x3Þ to the normal traction rn

within a discretized area centered at ðxk
1; x

k
2;0Þ

n1;n2;n3 grid sizes in the half-space along the Cartesian
directions x1; x2; x3, respectively

P normal applied load
P0 maximum Hertzian pressure
p contact pressure distribution
D indenter diameter
RðtÞ viscoelastic relaxation function
Sijkl components of the Eshelby’s tensor

u0
i displacements corresponding to the infinite

applied strain e0
ij

ui disturbed contribution of the displacements
W applied exterior load
dx3 depth of the inclusion from the surface of the

matrix in EF model

xI ¼ ðxI
1; x

I
2; x

I
3Þ Cartesian coordinates of the inclusion

center

Greek letters
e0

ij infinite applied strain
eij strain due to eigenstrains
e�ij eigenstrain due to the presence of inhomogene-

ities
r0

ij stress corresponding to the infinite applied
strain e0

ij
rij disturbed contribution of the stresses
/;W harmonic and biharmonic potentials of mass

density e�ij
dij Kronecker symbol
rn normal pressure due to the summation of both

symmetric inclusions
Dx1;Dx2 half size of the discretized surface area
mM ; mI Poisson’s ratio of the matrix M and the inclusion

I
c the ratio of the inhomogeneity Young’s

modulus to the matrix
g the dashpot viscosity
s the relaxation time
h the tilted angle of the inhomogeneity in the

x1Ox3 plan

Acronyms and fast Fourier transforms
2D-FFT two-dimensional fast Fourier transform
3D-FFT three-dimensional fast Fourier transform
FFT�1 inverse FFT operationbBijkl frequency response of coefficients Bijkl in the

frequency domainbMij frequency response of coefficients Mij in the fre-
quency domain
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